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Abstract This article explains the foundational concepts
of Bayesian data analysis using virtually no mathemati-
cal notation. Bayesian ideas already match your intuitions
from everyday reasoning and from traditional data analysis.
Simple examples of Bayesian data analysis are presented
that illustrate how the information delivered by a Bayesian
analysis can be directly interpreted. Bayesian approaches
to null-value assessment are discussed. The article clarifies
misconceptions about Bayesian methods that newcomers
might have acquired elsewhere. We discuss prior distri-
butions and explain how they are not a liability but an
important asset. We discuss the relation of Bayesian data
analysis to Bayesian models of mind, and we briefly discuss
what methodological problems Bayesian data analysis is not
meant to solve. After you have read this article, you should
have a clear sense of how Bayesian data analysis works and
the sort of information it delivers, and why that information
is so intuitive and useful for drawing conclusions from data.
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This article explains the basic ideas of Bayesian data analy-
sis. The article uses virtually no mathematical notation. The
emphases are on establishing foundational concepts and on
disabusing misconceptions. This article does not rehearse
the many reasons to be wary of p values and confidence
intervals (see, for example, Kruschke, 2013; Kruschke &
Liddell, 2017; Wagenmakers, 2007). We assume that you
already are curious about Bayesian methods and you want
to learn about them but you have little previous exposure to
them. For readers with some previous experience, we hope
that the framework described here provides some useful
unification and perspective.

The first section of the article explains the foundational
ideas of Bayesian methods, and shows how those ideas
already match your intuitions from everyday reasoning and
research. The next sections show some simple examples of
Bayesian data analysis, for you to see how the information
delivered by a Bayesian analysis can be directly interpreted.
We discuss Bayesian parameter estimation, Bayesian model
comparison, and Bayesian approaches to assessing null
values. The final sections focus on disabusing possible mis-
conceptions that newcomers might have. In particular, we
discuss when prior distributions are critical in an analysis
and when they are not, we discuss the relation of Bayesian
data analysis to Bayesian models of mind, and we briefly
discuss what methodological problems Bayesian data anal-
ysis is not meant to solve. After you have read this article,
you should have a clear sense of how Bayesian data anal-
ysis works and the sort of information it delivers, and
why that information is so intuitive and useful for draw-
ing conclusions from data. We hope the article provides a
clear conceptual framework that makes subsequent learning
much easier.
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The main idea: Bayesian analysis is reallocation
of credibility across possibilities

The main idea of Bayesian analysis is simple and intuitive.
There are some data to be explained, and we have a set
of candidate explanations. Before knowing the new data,
the candidate explanations have some prior credibilities of
being the best explanation. Then, when given the new data,
we shift credibility toward the candidate explanations that
better account for the data, and we shift credibility away
from the candidate explanations that do not account well
for the data. A mathematically compelling way to reallocate
credibility is called Bayes’ rule. The rest is just details.

You already are Bayesian in everyday reasoning

Bayesian reallocation of credibility across possibilities is so
intuitive that you already do it in everyday life. Here are two
examples.

Sherlock Holmes’ reasoning is Bayesian

The fictional detective Sherlock Holmes was famous for
remarking to his sidekick, Dr. Watson: “How often have I
said to you that when you have eliminated the impossible,
whatever remains, however improbable, must be the truth?”
(Doyle, 1890, Ch. 6). That simple reasoning is Bayesian.
Mr. Holmes begins a case with a set of candidate culprits
for the crime. Some suspects seem more suspicious than
others, and what makes detective novels fun is that the true
culprit is usually someone who has very small prior proba-
bility of being guilty. Holmes then does his detective work
and collects new information, what in scientific investiga-
tions would be called the data. From the data, suspicion is
reallocated across the suspects. If the data eliminate some
suspects, the remaining suspects must be more suspicious,
even if their prior probability was small.

Bayesian analysis does exactly the same reallocation,
but using precise mathematics. Figure 1 illustrates the re-
allocation graphically. Suppose there are four possible sus-
pects for a crime, named Amy, Bob, Cai, and Don. Based
on knowledge at the beginning of the investigation, Amy
is thought to be most suspicious and Don least suspicious,
as plotted in the prior distribution of panel A. During the
course of the investigation, new data give airtight alibis to
Amy, Bob, and Cai. Therefore all suspicion is re-allocated
to Don, as plotted in the posterior distribution of panel B.
The sort of graphical display in Fig. 1 will be used later in
this article to illustrate realistic applications in data analy-
sis. The horizontal axis denotes the range of possibilities,
and the vertical axis denotes the credibility, or probability,
of each possibility.
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Fig. 1 The Bayesian reasoning of Sherlock Holmes. A Prior distri-
bution of credibility across suspects, of the claim that the suspect
committed the crime. B After data indicate that suspects Amy, Bob,
and Cai could not have committed the crime, the posterior distribution
loads all credibility onto the claim that Don committed the crime

In Holmes’ reasoning, a tacit premise is that the actual
culprit is included in the set of suspects. A more accu-
rate phrasing for Holmesian reasoning is this: When you
have eliminated the impossible, whatever remains, how-
ever improbable, must be the least bad option from among
the possibilities you are considering. In general, Bayesian
reasoning provides the relative credibilities within the set of
considered possibilities.

Exoneration is Bayesian

Every pre-school child knows the logic of exoneration. Sup-
pose there’s a window broken during a time when some
children were playing nearby. The angry adult knows that
Tommy and Joey were among the children at the scene.
Innocent little Tommy is greatly relieved when Joey con-
fesses to accidentally breaking the window, because Tommy
knows he is exonerated by Joey’s confession. The logic of
exoneration is Bayesian: Reasoning starts with a set of can-
didate causes of the event, then collects new data such as
a confession, and then reallocates credibility accordingly. If
the data fully implicate one suspect, the remaining (unaf-
filiated) suspect must be less suspicious. Bayesian analysis
does the same reallocation, but with exact mathematics.
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The possibilities are parameter values

What do the examples of the previous section have to do
with data analysis? The connection is this: In data analysis,
the candidate explanations are values of parameters in math-
ematical descriptions. For example, suppose we randomly
poll ten people about an upcoming referendum, and we find
that seven intend to vote yes and the remaining three intend
to vote no. Given those data, what should we believe about
the proportion of people voting yes in the general popula-
tion? How credible is a proportion of 0.60, or 0.70, or 0.80,
and so on? Intuitively, we should allocate more credibility
to proportions near 0.70 than to proportions far from 0.70
because the data showed 7/10 yes votes. But with only ten
people polled, we should not allocate credibility too nar-
rowly only to proportions extremely close to 0.70, because
proportions such as 0.60 or 0.80 could easily have generated
7/10 in the data.

In this case, the underlying proportion is a parameter in
a simple coin-flipping model of the data. We conceive of
each randomly polled response as a flip of a coin that has
some underlying probability of coming up yes. We start with
some prior allocation of credibilities across the continuum
of possible parameter values. The prior allocation could be
quite vague and spread evenly across the range of candidate
values from 0 to 1, or the prior could give some candidate
proportions higher credibility than others if previous knowl-
edge recommends it. Then we collect data and re-allocate
credibility to parameter values that are consistent with the
data. Bayesian analysis provides the mathematical form of
the reallocation and more details will be provided later in
the article. In this section the emphasis is on the notion of a
parameter value as a candidate explanation of the data.

Parameter values are meaningful in the context
of their model

We care about parameter values because they are meaning-
ful. To illustrate, suppose we collect the weights of all the
children in third grade of a particular school. We describe
the set of data as being randomly generated from a normal
distribution with mean μ and standard deviation σ . If we
tell you that certain values of μ and σ are good descriptions
of the data, then you have a pretty good idea of what the
data look like. The values of the parameters are meaningful
in the context of the model. As another example, in linear
regression, the regression coefficient indicates how much
the predicted value changes when the predictor increases by
one unit. As yet another example, in analyses of multiple-
group designs, contrast parameters indicate differences of
group means. In all these situations, data are described by
mathematical models, and the parameters are meaningful.

Bayesian analysis tells us the relative credibilities of the
parameter values. That’s why the information provided by a
Bayesian analysis is so useful and intuitive.

Parameters can be discrete or continuous

In many mathematical descriptions of data, the parame-
ters are continuous, such as means, standard deviations,
and regression coefficients. The posterior distribution on
continuous parameters is a continuous distribution, rising
and falling smoothly across the range of the joint parame-
ter space. As nearly all statistical models involve continuous
parameters, it is continuous parameter distributions that
dominate Bayesian data analysis.

But descriptive parameters can also be discrete, not con-
tinuous. Perhaps the most common example is disease
diagnosis from an imperfect diagnostic test. The patient
takes a diagnostic test that provides a datum, namely, a result
of “positive” or “negative.” The test is imperfect, and has a
non-zero false-alarm rate and an imperfect correct-detection
rate. The parameter value to be inferred is the underlying
state of the patient, which has two discrete values: “has dis-
ease” or “does not have disease.” There is a prior distribution
on the discrete parameter values, which typically has low
probability on “has disease” and high probability on “does
not have disease.” The probability of having or not having
the disease is re-allocated in light of the test result.

There are many other examples of Bayesian inference
over discrete parameters. We already considered examples
in the context of Sherlock Holmes and exoneration. In those
cases, the parameter (i.e., the variable over which credi-
bility was re-allocated) was the set of candidate culprits.
The data collected by sleuthing reallocated probability more
heavily onto some suspects than others. As another exam-
ple of a discrete parameter, consider a historical document
of disputed authorship for which there are several possi-
ble authors. Based on characteristics from examples of the
authors’ writings with established provenance, we can infer
the relative posterior probabilities that each candidate author
wrote the document in question (e.g., Mosteller & Wallace,
1984; Peng, Schuurmans, & Wang, 2004). Analogous tech-
niques can be applied to inferring the probable identity of
a speaker from his or her voice, or inferring the probability
that an incoming email is spam based on its content.

Another important case of a discrete parameter, that we
will revisit later, is model comparison. For a given set of
data, there can be multiple models. Each model involves its
own parameters and prior distribution over its parameters.
The models are labeled by a discrete indexical parameter
(“1” for the first model, “2” for the second model, and
so on). When new data are considered, credibility shifts
over the parameter distributions within each model, and
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credibility simultaneously shifts over the discrete indexi-
cal parameter. The re-allocated posterior probabilities of
the model indices are the relative degrees to which we
believe each model, given the data. In particular, when one
model represents a null hypothesis and a second model
represents an alternative hypothesis, this discrete model
comparison is one way of implementing hypothesis test-
ing in a Bayesian framework (e.g., Edwards, Lindman, &
Savage, 1963; Kruschke, 2011, 2015; Wagenmakers, 2007).

Because the mathematics of Bayesian inference is rel-
atively easy to describe for discrete parameters and for
simple diagnostic tests, introductory expositions tend to use
examples with discrete parameters. Consequently, begin-
ners can get a mistaken impression that Bayesian inference
always involves discrete hypotheses. For instance, the clas-
sic article of Edwards et al. (1963) emphasized Bayesian
discrete hypothesis testing, even though the article started
with a description of Bayesian inference for continuous
parameters. The more general application is for continuous
parameters; discrete parameters are just a special case.

Bayesian analysis provides the relative credibilities
of parameter values

The goal of Bayesian data analysis is to provide an explicit
distribution of credibilities across the range of candidate
parameter values. This distribution, derived after new data
are taken into account, is called the posterior distribution
across the parameter values. The posterior distribution can
be directly examined to see which parameter values are most
credible, and what range of parameter values covers the
most credible values.

The posterior distribution can be directly interpreted. We
can “read off” the most credible parameter values and the
range of reasonable parameter values. Unlike in frequentist
statistical analysis, there is no need to generate sampling
distributions from null hypotheses and to figure out the
probability that fictitious data would be more extreme than
the observed data. In other words, there is no need for p

values and p value based confidence intervals. Instead, mea-
sures of uncertainty are based directly on posterior credible
intervals.

You already are Bayesian in data analysis

Bayesian reasoning is so intuitive that it’s hard to resist
spontaneously giving Bayesian interpretations to results of
traditional frequentist data analysis. Consider, for exam-
ple, the t test for a single group of 50 people to whom
we administered a “smart drug” and then an intelligence-
quotient (IQ) examination. We would like to know if the
mean IQ score of the group differs from the general popula-

tion average of 100. Suppose the t test yields t (49) = 2.36,
p = 0.023, with 95% confidence interval on μ extending
from 100.74 to 109.26. What does this mean?

Your intuitive interpretation of p values is Bayesian

Consider the result that p = 0.023. This means that the
probability that μ equals the “null” value of 100 is only
0.023, right? This is a natural, intuitive interpretation and is
the one that many or most people give (e.g., Dienes, 2011;
Gigerenzer, 2004; Haller & Krauss, 2002, and references
cited therein). Unfortunately, it is not the correct interpreta-
tion of the p value. It seems that people are interpreting a p

value as if it were the result of a Bayesian analysis. Bayesian
parameter estimation can provide the probability that μ is
within a narrow interval around the null value. A Bayesian
hypothesis test provides the probability that μ equals the
null value relative to an alternative hypothesis that μ could
span a wide range of values. In other words, we naturally
interpret a frequentist p value as if it were some form of
Bayesian posterior probability.

But a frequentist p value is not a Bayesian posterior prob-
ability. The p value is the probability that the observed data
summary (such as its t value), or something more extreme
than observed would be obtained if the null hypothesis were
true and the data were sampled according to the same stop-
ping and testing intentions as the observed data. In other
words, the p value is the probability that fictional, counter-
factual data from the null hypothesis would be more extreme
than the observed data, when those data were sampled
and tested as intended by the current researchers. Differ-
ent stopping and testing intentions therefore yield different
p values (e.g., Kruschke, 2013, 2015, Ch. 11; Kruschke
& Liddell, 2017). In summary, the correct interpretation
of the p value is very counterintuitive, and the intuitive
interpretation of the p value is as Bayesian posterior proba-
bility. Unfortunately, the p value is not a Bayesian posterior
probability.

Your intuitive interpretation of confidence
intervals is Bayesian

Consider the 95% confidence interval from 100.74 to
109.26. That means there is a 95% probability that the mean
μ falls between 100.74 and 109.26, right? This is a natural,
intuitive interpretation, and is the one that most people give
(e.g., Morey, Hoekstra, & Rouder, 2015). It is also the cor-
rect interpretation of a Bayesian credible interval. That is, if
we were to report from a Bayesian analysis that the posterior
distribution on μ has its 95% most credible values between
100.74 and 109.26, then we would correctly say that we
believe the mean μ has 95% probability of falling between



Psychon Bull Rev (2018) 25:155–177 159

100.74 and 109.26. In other words, we naturally interpret
a frequentist confidence interval as if it were a Bayesian
credible interval.

But a frequentist confidence interval is not a Bayesian
credible interval. A 95% confidence interval is the range
of parameter values we would not reject at p < .05 (Cox,
2006, p. 40). In other words, the confidence interval is
tied to the same fictional, counterfactual data sampling as
the p value. Different stopping and testing intentions yield
different confidence intervals (e.g., Kruschke, 2013, 2015,
Ch. 11; Kruschke & Liddell, 2017). In summary, the correct
interpretation of the confidence interval is very counterintu-
itive, and the intuitive interpretation of the confidence interval
is as a range on a Bayesian posterior probability distribution.

Build your intuition with simple examples

The previous section attempted to convey two key ideas:
Bayesian inference is reallocation of credibility across pos-
sibilities, and, the possibilities are values of parameters in
a mathematical description of data. Thus, we start with a
prior distribution over parameter values, then consider new
data, and arrive at a posterior distribution over parameter
values. The posterior distribution places higher credibility
on parameter values that are more consistent with the data.
Figure 1 summarized this sort of re-allocation graphically,
as a shift in the heights of bars over the space of discrete
possibilities. In this section we consider a few more simple
examples of this process, applied to more typical cases with
continuous ranges of possibilities.

The probability of dichotomous data

Suppose we want to know how well a drug cures a dis-
ease. Suppose we have a specific dosage and a specific
operationalization for measuring whether a patient is cured
or not. Of 50 patients treated, 36 are cured. From those
data, what are credible values of the underlying probability
of cure? Intuitively, the most credible probability is about
36/50 = 0.72, but we know that the data are a random
sample and hence there is a range of uncertainty.

We start with a model of the data that has a meaningful
parameter. Our model is simple: The probability of cure is
the value of parameter θ , which has possible values on the
continuous interval from 0 to 1. Before considering the new
data, we establish a prior distribution of credibility of the
parameter values. For purposes of illustration, we will sup-
pose that we have little prior knowledge of the cure rates for
this disease and drug, and we will suppose that all values
in the range from 0 to 1 are essentially equally possible, as
shown in panel A of Fig. 2.

Bayesian analysis provides a quantitatively precise re-
distribution of credibility over the parameter values, given
the data. Panel B of Fig. 2 shows the posterior distribution.
Notice that the posterior distribution is peaked near the pro-
portion of cures in the data, and the credibility drops off for
values of θ above or below the data proportion.

The range of values of θ that includes the 95% most
credible values is marked in the posterior distribution as
the 95% HDI. HDI stands for highest density interval,
which refers to the technical terminology of “probability
density” instead of the colloquial but accurate term “credi-
bility.” Crucially, every parameter value within the HDI has
higher credibility (i.e., higher probability density) than any
parameter outside the HDI. We refer to the “most credi-
ble” parameter values as the parameter values with highest
probability density. The 95% HDI contains a total probabil-
ity of 95%. We use a 95% probability mass for the HDI,
as opposed to 90% or 99% or whatever, merely because of
familiarity by analogy to 95% confidence intervals in fre-
quentist statistics. We say that the 95% HDI contains the
95% most credible values of the parameter.

Importantly, the posterior distribution reveals the credi-
bility of every value of the meaningful parameter. From the
posterior distribution, we merely “read off” whatever we
may want to know about the parameter estimate, such as the
most credible value (i.e., the mode of the distribution), the
value of median or mean credibility, and the exact range of
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Fig. 2 Estimating the probability θ that a patient is cured when given a
particular drug. A Prior distribution is broad over possible values of the
parameter θ . B For N = 50 patients with z = 36 cures, the posterior
distribution over the parameter θ is much narrower. HDI limits and
modes are displayed to first three digits only. Compare with Fig. 1
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uncertainty as indicated by the HDI. Later in this article it
will be explained how to assess null values, such as whether
the cure rate of the drug is meaningfully greater than a base-
line value of, say, θ = 0.5. For now, notice that it is easy to
see where the null value falls in the posterior distribution.

The mean and standard deviation of normally
distributed metric data

Consider now a case in which the data are metric, not
dichotomous as in the previous example. Suppose we are
considering the influence of a “smart drug” on IQ scores.
We administer the smart drug to N = 63 people chosen at
random, and the sample mean is 110 with a standard devia-
tion of 20, and a histogram of the data appears to be roughly
normal (not shown here). Suppose we wish to describe the
set of data as a normal distribution that has mean μ and
standard deviation σ . What are credible values of μ and σ

for the normal model, and what is our uncertainty in the
credible parameter values?

We start with a prior distribution on the infinite two-
dimensional parameter space that represents all possible
combinations of values for the mean (μ) and standard-

deviation (σ ) parameters of the normal model. For our
present purposes, we suppose that we have very limited
prior knowledge about how the data might come out, except
for rough knowledge about the magnitude of the measure-
ments. In this case, the data are IQ scores, which are normed
for the general population to have a mean of 100 and a stan-
dard deviation of 15. But we don’t know much about scores
from a smart-drug group, so we may suppose that the mean
will be somewhere in the interval between 0 and 250, and
the standard deviation will be somewhere in the interval
between 0 and 40. (Later in the article we discuss the choice
of prior distribution.) The broad prior distribution on this
interval is shown in panel A of Fig. 3.

The posterior distribution is shown in panel B of Fig. 3.
Notice that the most credible values of the parameters are
very close to the sample mean and standard deviation, and
the posterior distribution explicitly reveals the uncertainty
in the estimate. In particular, notice that the 95% HDI spans
a small range relative to the prior distribution. Anything we
want to know about the parameters we simply “read off” the
posterior distribution.

The posterior distribution provides a joint distribution
over both parameters simultaneously. There is no need to
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Fig. 3 A Prior distribution is broad over possible values of the parameters, μ and σ . The parameters are in a two-dimensional joint space, although
only the marginal distributions are shown here. The actually-used distribution was uniform but the distribution shown here has rounded shoulders
because of smoothing for display purposes only. B After taking into account a given set of data, the posterior distribution over the parameters is
much narrower than in the prior. Notice that the range of the abscissa is much smaller in the graphs of the posterior (B) than in the graphs of the
prior (A). The vertical axis (unlabelled) is the relative probability density. HDI limits and modes are displayed to first three digits only
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generate different sampling distributions of different test
statistics to evaluate different parameters, such as a sam-
pling distribution of t to test the mean and a separate
sampling distribution of χ2 to test the standard deviation.

Bayesian analysis applies to any parameterized
model of data

After seeing a few simple examples such as those illustrated
in the previous sections, newcomers often wonder whether
Bayesian analysis applies to some other favorite situation or
analysis. Can Bayesian methods be used for factor analy-
sis? Yes (e.g., Arminger & Muthén, 1998; Ghosh & Dunson,
2009; Merkle, 2016; Mezzeti, 2012; Song & Lee 2001,
2012). Can Bayesian methods be applied to item response
theory? Yes (e.g., http://tinyurl.com/BayesianIRT,1 Albert,
1992; Azevedo, Andrade, & Fox, 2012; Santos, Azevedo, &
Bolfarine, 2013). Can Bayesian methods be used for clus-
ter analysis? Yes (e.g., Guglielmi, Ieva, Paganoni, Ruggeri,
& Soriano, 2014; Lau & Green, 2007; Richardson & Green,
1997). Can Bayesian methods be used for time-series anal-
ysis? Yes (e.g., Geweke & Whiteman, 2006; McCulloch &
Tsay, 1994; Pole, West, & Harrison, 1994). Can Bayesian
methods be used for hierarchical conditional-logistic mod-
els of nominal data? Yes: (e.g., Liddell & Kruschke, 2014).

In principle, any parameterized model of data can have
its parameters estimated via Bayesian methods. The beauty
of the Bayesian approach is that the posterior distribution
can be directly examined for determining what parameter
values are most credible and how uncertain the estimate is.
We just “read off” the intuitively meaningful answer directly
from the posterior distribution. There is no need for addi-
tional assumptions and complications in deriving sampling
distributions for p values and p-value based confidence
intervals.

Bayesian model comparison

In some situations, the researcher may have two or more
candidate models of the data, and be interested in evaluating
the relative veracities of the models. For example, a scatter-
plot of 〈xi, yi〉 data might be modeled as a linear trend of
x with normally distributed y values, or as an exponential
trend with Weibull distributed y values. The models could
be “nested” such that one model merely restricts some of the
parameter values of the other model, or the models could be

1The full URL is http://doingbayesiandataanalysis.blogspot.com/2015/
12/bayesian-item-response-theory-in-jags.html and a PDF version is
available at https://osf.io/79ugq/.

non-nested and involve completely different parameters and
mathematical structure.

We suppose that model 1 involves parameter θ while
model 2 involves parameter φ. The key idea is that the
model index M is itself another parameter. The model-index
parameter M has discrete values, namely M = 1 or M = 2
(when there are two models, but there could be more). The
parameters within the models, θ and φ, will in general be
continuous but could be discrete. Thus the overall parame-
ter space is a multi-dimensional space involving M × θ ×φ.
Bayesian inference is re-allocation of credibility across the
overall parameter space. The probability distribution shows
the relative credibilities of the model index values, and the
relative credibilities of parameter values within each model.
To judge the relative veracities of the models, we simply
“read off” the posterior probabilities of the model indices.

Figure 4 illustrates the parameter space of model com-
parison and how Bayesian inference re-allocates credibility
across that space. The figure caption provides detailed
explanation, and we encourage the reader to examine the
figure now.

An inherent quality of Bayesian model comparison is that
the prior distributions on the parameters “inside” the models
(θ and φ in our example) can strongly affect the poste-
rior distribution of the model indices. This sensitivity of the
model-index posterior to the within-model priors is caused
by the fact that the model-index probability reflects the
models’ abilities across their entire parameter spaces, not

(A) (B)

Fig. 4 Bayesian model comparison. In both panels A and B, model 1
involves a parameter denoted θ , whereas model 2 involves a parame-
ter denoted φ. In general, θ and φ may be multidimensional and may
be continuous or discrete valued. At the top of both panels, the dis-
crete model-index parameter is denoted M . The two bars indicate the
probabilities that M = 1 and M = 2. The full space of possibili-
ties is the multi-dimensional parameter space involving M × θ × φ.
In panel A, the prior distribution is shown iconically as broad dis-
tributions on parameters θ and φ within the two models, and equal
probabilities on the discrete values M = 1 and M = 2. In panel B,
the posterior distribution shows that credibility has been re-allocated
across all the parameters, with M = 2 having higher probability than
M = 1. Bayesian inference has re-allocated credibility across the
entire multi-dimensional parameter space M × θ × φ simultaneously

http://tinyurl.com/BayesianIRT
http://doingbayesiandataanalysis.blogspot.com/2015/12/bayesian-item-response-theory-in-jags.html
http://doingbayesiandataanalysis.blogspot.com/2015/12/bayesian-item-response-theory-in-jags.html
https://osf.io/79ugq/
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exclusively at their best-fitting parameter values. In other
words, the prior distributions on the model parameters are
an integral part of the meanings of the models. Model 1
asserts a description of the data as a mathematical form with
parameter values θ approximately in a particular zone as
specified by its prior distribution. Model 2 asserts a descrip-
tion of the data as a different mathematical form with its
parameter values φ approximately in another particular zone
as specified by its prior distribution. If the prior distribution
of a model gives high credibility to parameter values that
happen to fit the data well, then the posterior probability of
that model index will tend to be high. But if the prior distri-
bution of a model dilutes its prior distribution over a wide
range of parameter values that do not fit the data well, then
the posterior probability of that model index will tend to
be low.

Bayesian model comparison automatically takes into
account model complexity. This is important because a com-
plex model will always be able to fit data better than a
restricted model (nested in the complex model), even when
the simpler restricted model actually generated the data. For
example, suppose we have a scatter plot of 〈xi, yi〉 data that
was actually generated by a linear trend. A quartic polyno-
mial will always be able to fit the data better than a linear
trend because the quartic will over-fit random noise in the
data. We would like the model comparison method to be
able to declare the simpler model as better than the complex
model in this sort of situation. Bayesian methods inherently
do this. The reason is that complex models involve more
parameters than restricted models, and higher-dimensional
parameter spaces require the prior distribution to be diluted
over a larger space. The diluted prior distribution means
that the prior probability is relatively small for any partic-
ular parameter value that happens to fit the data. Therefore
the posterior probability of a complex model tends to be
downweighted by its diluted prior probability distribution.
A complex model can win, however, if the data are much
better fit by parameter values in the complex model that are
not accessible by the restricted model.

In summary, Bayesian model comparison is an excellent
method for assessing models because it is both intuitively
informative (just read off the posterior probabilities) and
automatically takes into account model complexity. There is
no need to compute p values by generating sampling distri-
butions of imaginary data from restricted models. Bayesian
model comparison does, however, require the analyst to
think carefully about the prior distributions on the param-
eters within the models, and to think carefully about the
prior distribution on the model index. One way to keep
the prior distributions within the two models on an equal
playing field is by informing both models with the same rep-
resentative previous data. That is, both models are started
with a diffuse proto-prior, and both models are updated

with the same previous data. The resulting posterior distri-
butions from the previous data act as the prior distributions
for the model comparison (Kruschke, 2015, Section 10.6.1,
p. 294). For further reading about Bayesian model compar-
ison and setting useful priors within models, see examples
in Kary et al. (2016) and in Vanpaemel and Lee (2012).
The setting of prior probabilities on the model index is
also important but less often considered. Setting the prior
probabilities of two models at 50/50 is not an expression
of uncertainty but is instead an expression of strong prior
knowledge that the models have equal prior probability.
Bayesian methods also allow expressing uncertainty in the
prior probabilities of the model indices (see, e.g., http://
tinyurl.com/ModelProbUncertainty2).

Two approaches to assessing null values

In many fields of science, research focuses on magnitudes of
phenomena. For example, psychometricians might be inter-
ested in where people or questionnaire items fall on scales
of abilities, attitudes, or traits. But in other domains, ques-
tions might focus on presence versus absence of an effect,
without much concern for magnitudes. Is the effect of treat-
ment different from the control group or not? Researchers
would like to know whether the estimated underlying effect
is credibly different from the null value of zero or chance.
In this section, we will consider two Bayesian approaches to
assessing null values. We will see that the two approaches
correspond to different levels in the model-comparison
diagram in Fig. 4.

Intervals on parameter estimates

Framing a theory as merely “any non-null effect” can lead to
Meehl’s paradox: As sample size increases and therefore as
estimation precision increases, it gets easier to confirm the
theory than to disconfirm the theory (Meehl, 1967, 1997).
Science should work the other way around, and posit theo-
ries that are challenged more severely by more precise data.
Meehl’s paradox arises whenever there is a non-zero effect,
regardless of how small, because with enough data the
non-zero effect will be detected and the null value will be
rejected, thereby confirming the anything-but-null theory.

A theory should instead be framed such that increased
precision of data yields a greater challenge to the theory.
A solution was described by Serlin and Lapsley (1985,
1993): Theories should predict a magnitude of effect, with

2The full URL is http://doingbayesiandataanalysis.blogspot.com/2015/
12/lessons-from-bayesian-disease-diagnosis 27.html and a PDF version
is available at https://osf.io/r9zfy/.

http://tinyurl.com/ModelProbUncertainty
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a region of practical equivalence (ROPE) around the pre-
dicted magnitude. (Serlin and Lapsley called the region
around the predicted value a “good-enough belt.”) As more
data are collected, the estimate becomes more precise with
a smaller range of uncertainty. When that range falls out-
side the ROPE the theory is disconfirmed, and when the
range of uncertainty falls entirely within the ROPE then the
theory is confirmed for practical purposes. In particular, a
null value surrounded by a ROPE can be accepted, not only
be rejected. Among frequentists, this approach is used in
the method called equivalence testing (e.g., Lakens, 2017;
Rogers, Howard, & Vessey, 1993; Westlake, 1976, 1981).
A related framework is also used in clinical non-inferiority
testing (e.g., Lesaffre, 2008; Wiens, 2002). The approach
forms an intuitive basis for our first way to assess null values
with a Bayesian posterior distribution. For a comparison of
decisions made by equivalence testing and HDI with ROPE,
see https://tinyurl.com/TOSTvsHDIandROPE.3

We set a ROPE that defines values that are equivalent to
the null for practical purposes. For example, consider the
effect size δ in a normal distribution, which is defined as
the mean μ minus the null value M0 all over the standard
deviation σ , that is, δ = (μ − M0)/σ . The effect size is the
parameter that corresponds to Cohen’s d (Cohen, 1988). We
might declare a ROPE around zero effect size from −0.1 to
+0.1 because Cohen (1988) established a convention that
a “small” effect size is 0.2, and we will set the ROPE lim-
its at half of that value. Thus, this choice of ROPE says
that any value of effect size that is less than half of small is
practically equivalent to zero.

The ROPE is merely a decision threshold, and its lim-
its are chosen always in the context of current theory and
measurement precision. For example, Cohen’s (1988) dec-
laration that a “small” effect size is 0.2 was made in the
context of what he experienced from typical research in
social sciences: “The terms ‘small,’ ‘medium,’ and ‘large’
are relative, not only to each other, but to the area of
behavioral science or even more particularly to the specific
content and research method being employed in any given
investigation.” (Cohen, 1988, p. 25) Other fields of study
might routinely measure phenomena with smaller effect
sizes, or eschew such small effects and focus on phenomena
with larger effect sizes. Serlin and Lapsley (1993, p. 211)
said, “The width of the [ROPE] depends on the state of the
art of the theory and of the best measuring device available.
It depends on the state of the art of the theory ... [because]
a historical look at one’s research program or an examina-
tion of a competing research program will help determine
how accurately one’s theory should predict in order that it

3The complete URL is http://doingbayesiandataanalysis.blogspot.com/
2017/02/equivalence-testing-two-one-sided-test.html and a PDF version
is available at https://osf.io/q686c/.

be competitive with other theories.” By reporting the poste-
rior distribution, readers from different fields and later times
can use their own ROPEs to make decisions.

With a ROPE to define a region of values that are prac-
tically equivalent to the null value, a decision rule can be
stated as follows:

If the ROPE completely excludes the 95% HDI, then
the ROPE’d value is rejected (because none of the 95%
most credible values is practically equivalent to the
ROPE’d value).

If the ROPE completely includes the 95% HDI, then
the ROPE’d value is accepted for practical purposes
(because all of the 95% most credible values are prac-
tically equivalent to the ROPE’d value).

If the ROPE and 95% HDI only partially overlap, then
remain undecided about the ROPE’d value (because
some of the 95% most credible values are practically
equivalent to the ROPE’d value but some are not).

The decision accepts or rejects only the ROPE’d value, such
as the null value, not the entire ROPE’d interval.

Figure 5 illustrates examples of applying this decision
rule. Suppose we are interested in the effect of a “smart
drug” on IQ scores. We know the general background IQ has
a mean of 100 (and a standard deviation of 15). For purposes
of illustration, we use a ROPE on effect size from −0.1
to +0.1, halving Cohen’s (1988) convention for a small
effect. The effect size is relative to the null-effect value of
M0 = 100. Suppose we collect data from N = 63 randomly
selected people, and the sample has a mean of 110 and a
standard deviation of 20. The resulting posterior distribu-
tion of the effect size is shown in panel A of Fig. 5, where it
can be seen that the ROPE completely excludes the HDI. In
other words, from these data we would reject the candidate
value μ = 100 as untenable for describing the sample data.

The posterior distribution on effect size in Fig. 5 is
merely a different perspective on exactly the same posterior
distribution previously shown for these data in Fig. 3. Recall
that the posterior distribution is a joint distribution on the
multidimensional parameter space. Every point in the space
is a combination of μ and σ , which represents a correspond-
ing effect size, (μ−100)/σ . Every point in parameter space
also has a corresponding posterior credibility. The posterior
distribution of effect sizes is shown in Fig. 5.

From the posterior distribution we can directly say, “the
95% most credible values of effect size fall between 0.23
and 0.75.” This statement is analogous to a frequentist con-
fidence interval, but unlike a confidence interval the HDI
actually refers to probabilities of parameter values, not to
fictitious samples of data from alternative hypotheses. From
the posterior distribution we can also make a statement anal-
ogous to a frequentist p value: “There is only 0.2% (0.002)

https://tinyurl.com/TOSTvsHDIandROPE
http://doingbayesiandataanalysis.blogspot.com/2017/02/equivalence-testing-two-one-sided-test.html
http://doingbayesiandataanalysis.blogspot.com/2017/02/equivalence-testing-two-one-sided-test.html
https://osf.io/q686c/
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Fig. 5 Posterior distributions on effect size for IQ, (μ − 100)/σ ,
marked with 95% HDI and ROPE. The null value of 0 is marked by
a vertical dotted line, annotated with the percentage of the posterior
distribution that falls below it and above it. The ROPE limits are also
marked with vertical dotted lines and the percentage of the posterior
distribution that falls below, within, and above the ROPE. A Posterior
distribution of effect size when N = 63 with sample mean of 110 and
sample standard deviation of 20. This distribution is just a different
perspective on the same posterior distribution shown in Fig. 3. Notice
that the 95% HDI falls entirely outside the ROPE, and there is only
0.2% probability that the effect size is practically equivalent to zero.
B Posterior distribution of effect size when N = 463 with sample
mean of 100 and sample standard deviation of 15. Notice that the 95%
HDI falls entirely within the ROPE, and there is 96.9% probability that
the effect size is practically equivalent to zero

probability that the effect size is practically equivalent to
zero.” This statement refers to the probability of an inter-
val around the null value, not to a point null value. Unlike
a p value, the statement is about the probability of parame-
ter values, not about the probability of fictitious samples of
data from a null hypothesis.

Suppose instead that our data consist of N = 463 ran-
domly selected people, and the sample mean is 100 and the
sample standard deviation is 15. The resulting posterior dis-
tribution on effect size is shown in panel B of Fig. 5. Notice
in this case that the 95% HDI falls entirely inside the ROPE,
and we would decide to accept the null value for practi-
cal purposes. Notice that this conclusion is based on having

sufficient precision in the estimate of the effect size so we
can safely say that more extreme values for the effect size
are not very credible. From the posterior distribution we can
make statements about probabilities such as, “the 95% most
credible effect sizes fall between −0.091 and 0.091,” and,
“there is 96.9% probability that the effect size is practically
equivalent to zero.” These probability statements are care-
fully phrased so that they do not sound like hypothesis tests.
The terminology of “Bayesian hypothesis test” is reserved
for a different framing, described in the next section.

Comparing spike prior to alternative prior

A different way of assessing a null value is by expressing
the null hypothesis as a particular prior distribution over
the parameters and comparing it to an alternative prior dis-
tribution (e.g., Edwards et al., 1963; Jeffreys, 1961). For
example, the “null” hypothesis that a coin is fair could be
expressed by a prior distribution on the coin’s bias parame-
ter, θ , that is shaped like an infinitely dense spike at θ = 0.5
with zero height at all other values of θ . The spike prior
is compared against an alternative prior distribution that
allows a wide range of possible values of θ , such as the one
in panel A of Fig. 2. Bayesian inference assesses the rela-
tive credibility of the two prior distributions as accounts of
the data.

This framing for Bayesian hypothesis testing is really
a special case of Bayesian model comparison that was
illustrated in Fig. 4. The two models in this case are the
spike-prior null hypothesis and the broad-prior alternative
hypothesis. Both models involve the same parameters but
different prior distributions. Bayesian inference re-allocates
credibility across all the parameters simultaneously, includ-
ing the model-index parameter and the parameters within
the models. The posterior probabilities on the model indices
indicate the relative credibilities of the null and alterna-
tive hypotheses. This framework is illustrated in Fig. 6,
which has an extensive explanatory caption that the reader
is encouraged to examine now.

In principle, the decision rule about the models would
focus on the posterior probabilities of the model indices.
For example, we might decide to accept a model if its pos-
terior probability is at least ten times greater than the next
most probable model. In practice, the decision rule is often
instead based on how much the two model probabilities have
shifted, not on where the model probabilities ended up. The
degree of shift is called the Bayes factor, which is tech-
nically defined as the ratio of probabilities of the data as
predicted by each model. Put another way, the Bayes factor
is a multiplier that gets us from the prior odds ratio to the
posterior odds ratio. For example, if the prior odds of the
two models are 50/50 and the posterior odds are 91/9, then
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(A) (B)

Fig. 6 Bayesian null hypothesis testing. This is a special case of
model comparison that was shown in Fig. 4 (please see Fig. 4 for a
description of the diagram’s components). Both models involve the
same parameters but differ in their assumptions about the prior distri-
butions on those parameters. Here, the model comparison focuses on
the particular parameter μ, but the models typically involve many other
parameters simultaneously. In panel A, the prior distribution shows
that the null hypothesis (M = 1) assumes a “spike” prior distribution
on μ such that only the null value has non-zero probability, whereas
the alternative hypothesis (M = 2) assumes a broad prior distribu-
tion on μ. The null value is denoted here generically by the tic mark
at μ = 0. In panel B, the posterior distribution shows that credibil-
ity has been re-allocated across the possible parameter values. In this
case, the model-index parameter M shows that the alternative hypothe-
sis (M = 2) has higher posterior probability, and within the alternative
hypothesis the distribution over μ shows that the most credible val-
ues of μ are away from the null value. Within both models the other
parameters (not shown) have also had their distributions re-allocated,
differently in each model

the multiplier that gets from the prior odds to the posterior
odds is very nearly 10.1. A Bayes factor of 10.1 also gets
from prior odds of 9/91 to posterior odds of 50/50. When the
Bayes factor exceeds a critical threshold, say 10, we decide
to accept the winning model and reject the losing model.
A Bayes factor between 3 and 10 indicates “moderate”
or “substantial” evidence for the winning model (Jeffreys,
1961; Kass and Raftery, 1995; Wetzels et al., 2011). A
Bayes factor between 10 and 30 indicates “strong” evidence,
and a Bayes factor greater than 30 indicates “very strong”
evidence. The decision threshold for the Bayes factor is set
by practical considerations. Dienes (2016) used a Bayes fac-
tor of 3 for making decisions. Schönbrodt, Wagenmakers,
Zehetleitner, and Perugini, (2016) recommended a thresh-
old Bayes factor of 6 for incipient stages of research but a
higher threshold of 10 for mature confirmatory research (in
the specific context of a null hypothesis test for the means
of two groups).

As concrete examples, consider the data corresponding
to panel A of Fig. 5, which yield a Bayes factor almost 108
to 1 in favor of a particular default-alternative prior rela-
tive to the spike-null prior. If the prior odds were 50/50 then
the posterior odds would be greater than 99/1 for the alter-
native hypothesis, but if the prior odds were 1/99 then the

posterior odds would be only about 52/48. For the data cor-
responding to panel B of Fig. 5, a Bayes factor is more than
19 to 1 in favor of the spike-null prior relative to a particular
default-alternative prior. If the prior odds were 50/50 then
the posterior odds would be 95/5 for the null hypothesis,
but if the prior odds were 1/99 then the posterior odds
would be only about 16/84 (i.e., favoring the alternative
hypothesis). For both examples we used the Bayes fac-
tor calculator provided by Rouder, Speckman, Sun, Morey,
& Iverson, (2009, at http://pcl.missouri.edu/bf-one-sample)
with its default setting for choice of alternative prior (i.e.,
r = 0.707).

There has recently been a flurry of articles promoting
Bayes-factor tests of null hypotheses (e.g., Andraszewicz
et al., 2014; de Vries, Hartogs, & Morey, 2014; Dienes,
2011, 2014; Jarosz &, Wiley, 2014; Masson, 2011;
Morey & Rouder, 2011; Rouder, 2014; Rouder & Morey,
2012; Rouder, Morey, Speckman, & Province, 2012;
Wagenmakers, 2007, among many others). Despite the
many appealing qualities described in those articles, we
urge caution when using model comparison for assessing
null hypotheses (and Bayes factors in particular), for the
following main reasons:

1. The magnitude and direction of a Bayes factor can
change, sometimes dramatically, depending on the
choice of alternative prior. To be clear, here we are refer-
ring to the shape of the prior distribution within the
alternative model, shown as a broad distribution on μ

in panel A of Fig. 6. Examples of the sensitivity of the
Bayes factor to the alternative-hypothesis prior distri-
bution are provided by Kruschke (2015, Ch. 12, 2011,
and 2013, Appendix D), and by many others (e.g., Gal-
listel, 2009; Kass & Raftery, 1995; Liu & Aitkin, 2008;
Sinharay & Stern, 2002; Vanpaemel, 2010). Proponents
of the Bayes factor approach to hypothesis testing are
well aware of this issue, of course. One way to address
this issue is by establishing default families of alterna-
tive priors (e.g., Rouder & Morey, 2012; Rouder et al.,
2012).

2. Default alternative priors often are not representative of
theoretically meaningful alternative priors. For exam-
ple, Kruschke (2011) showed a case of testing extrasen-
sory perception in which the Bayes factor changed
direction, from favoring the null to favoring the alter-
native, when the alternative prior was changed from a
default to a distribution based on (idealized) previous
results. Therefore, for a hypothesis test to be meaning-
ful, the alternative prior distribution must be meaningful
(and the prior on the other parameters in the null
hypothesis also must be meaningful). Perhaps the most
meaningful alternative prior distribution is one that is

http://pcl.missouri.edu/bf-one-sample
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obtainable as a Bayesian posterior distribution from
previous data after starting with a diffuse proto-prior
(Kruschke, 2015, pp. 294–295, 346). The same proce-
dure can be used to make a meaningful null-hypothesis
distribution. A similar approach was taken by
Verhagen and Wagenmakers (2014) when applying
Bayesian hypothesis testing to replication analysis. By
contrast, alternative prior distributions that are centered
at zero, or arbitrarily shaped such as half normals or
restricted uniform intervals (Dienes, 2014), typically
would not be obtained as a Bayesian posterior from
previous data and a diffuse proto-prior.

3. The Bayes factor by itself does not use the prior prob-
abilities of the hypotheses, hence does not indicate the
relative posterior probabilities of the hypotheses, and
therefore can be misleading. To be clear, here we are
referring to the prior probabilities of the model indices,
shown as the bars on M in panel A of Fig. 6. Con-
sider, for example, the standard introductory example
of disease diagnosis. Suppose there is a disease with
a diagnostic test that has a hit rate of 95%, meaning
that the probability of a positive test result for a dis-
eased person is 95%. Suppose also that the diagnostic
test has a false alarm rate of 5%. Lastly, suppose we test
a person at random and the result is positive. The Bayes
factor of the result is 0.95/0.05 = 19.0 in favor of hav-
ing the disease. By considering the Bayes factor alone,
we would decide that the patient has the disease. But
the Bayes factor ignores the prior probability of having
the disease. If the disease were rare, with only 0.1% of
the population having it, then the posterior probability
of having the disease is only 1.9%. While the posterior
probability is 19 times higher than the prior probability
of 0.1%, it is still very low, and deciding that the person
has the disease if there is only a 1.9% probability that
s/he has the disease would be very misleading. Thus,
using the Bayes factor to make decisions is dangerous
because it ignores the prior probabilities of the models.
When applied to null hypothesis testing, if either the
null hypothesis or the alternative hypothesis has minus-
cule prior probability, then an enormous Bayes factor
would be required to reverse the prior probabilities of
the hypotheses.

Sometimes it is argued that the Bayes factor is the
same as the posterior odds when the prior probabilities
of the hypotheses are set to 50/50, and it is reasonable
to set the prior probabilities of the hypotheses to 50/50
as an expression of uncertainty about the hypothe-
ses. On the contrary, setting the prior probabilities to
50/50 is not an expression of uncertainty; rather it is a
strong assertion of equality, just as strong as setting the
prior probabilities to 0.001/0.999 or any other values. If
there is uncertainty in the prior probabilities it should

be expressed in a more elaborate model structure; see
http://tinyurl.com/ModelProbUncertainty.4

4. The Bayes factor indicates nothing about the magni-
tude of the effect or the precision of the estimate of
the magnitude. In this way, using a Bayes factor alone
is analogous to using a p value alone without a point
estimate or confidence interval. The “ritual of mindless
statistics” using p values could easily be replaced with
a ritual of mindless statistics using default Bayes factors
(Gigerenzer, 2004; Gigerenzer & Marewski, 2015). Not
considering estimates of effect sizes and uncertainty
violates a major emphasis of recent advice in statistical
practice: “Always present effect sizes... . Interval esti-
mates should be given for any effect sizes... . (Wilkin-
son, 1999, p. 599)” The emphasis on reporting and
thinking in terms of effect magnitudes and uncertain-
ties continues to this day (e.g., Cumming, 2012, 2014;
Fritz, Morris, & Richler, 2012; Lakens, 2013). All the
generic reasons offered in those sources to avoid p val-
ues and to examine effect magnitudes and precisions
are well taken. But we go further and recommend that
the goals are better achieved by Bayesian HDI’s than by
frequentist confidence intervals. Please see the compan-
ion article by Kruschke and Liddell (2017) for further
discussion.

5. The Bayes factor can accept a null prior even when
there is poor precision in the estimate of the magnitude
of effect. In other words, the Bayes factor can accept
the null prior even when an estimate of the magnitude
indicates there is a wide range of credible non-null val-
ues for the effect. Examples are provided in Kruschke
(2015, Ch. 12 and 2013, Appendix D).

In summary, we recommend to use the model-
comparison approach to null hypothesis testing only when
the null hypothesis has a plausible and quantifiable non-zero
prior probability (point 3 above), and with a theoretically
meaningful alternative prior distribution not only with a
default alternative (point 2 above), and with a check of the
sensitivity of the Bayes factor to reasonably different alter-
native priors when there is uncertainty or dispute about the
priors (point 1 above), and with an explicit posterior distri-
bution on the parameter values to examine the magnitude
and uncertainty of the estimate (points 4 and 5 above).

Bayesian model comparison in general can be a richly
informative procedure. It provides a coherent way to evaluate
non-nested (or nested) models, with automatic accounting
for model complexity. In general, Bayesian model compari-
son requires careful consideration of the prior distributions,

4The full URL is http://doingbayesiandataanalysis.blogspot.com/2015/
12/lessons-from-bayesian-disease-diagnosis 27.html and a PDF version
is available at https://osf.io/r9zfy/.
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but when the prior distributions are carefully informed the
results can be very useful. When Bayesian model compari-
son is applied to the special case of null hypothesis testing,
the same caveats and promises apply. We raised the list of
cautions above because Bayesian null hypothesis testing can
too easily be done in a ritualized, default fashion that under-
mines the potentially rich information available in Bayesian
model comparison.

Some proponents of the Bayes-factor approach object
to the ROPE-with-HDI approach. We believe the objec-
tions center on how the term “null hypothesis” is allowed
to be expressed mathematically, and on what probability
statements are desired. If you believe that the only sensi-
ble mathematical expression of the term “null hypothesis”
is a spike prior at a point value, then, by definition, the
only sensible approach to null hypothesis testing is to
compare the spike prior against an alternative prior distri-
bution. Therefore be careful with terminology. When using
the ROPE-with-HDI approach, we are considering a null
“value” and its ROPE relative to the posterior HDI; we are
not considering a null “hypothesis.” In the ROPE-with-HDI
approach, we can talk about the probability that the param-
eter (such as effect size) is practically equivalent to the null
value, and we can talk about the magnitude and uncertainty
of the parameter as revealed by its explicit posterior distri-
bution. In the Bayes-factor approach, we can talk about the
predictive probability of the null-hypothesis prior relative to
a particular alternative-hypothesis prior, but the Bayes factor
by itself does not provide the posterior probabilities of the
hypotheses nor does the Bayes factor provide the magnitude
of the effect or its uncertainty.

The prior-comparison approach and the ROPE-with-
HDI approach are both based on mathematically correct
Bayesian inference; the difference is merely in emphasis
and interpretation. The two approaches are simply different
levels in the unified hierarchical model that was shown in
Fig. 6, and as further explained by Kruschke (2011, 2015,
Ch’s. 10 and 12). (See also the video at http://tinyurl.com/
PrecisionIsGoal.5) In the hierarchical model of Fig. 6, the
HDI-with-ROPE decision rule focuses on the continuous
parameter estimate in the alternative model, that is, the pos-
terior distribution on μ in panel B. The HDI-with-ROPE
rule makes decisions based on the relations of sub-intervals
in that posterior distribution. The Bayes-factor decision rule
focuses on the higher-level model index M that points at the
spike-null prior versus the alternative prior. Both the contin-
uous parameter μ and the higher-level model index M are
parameters with credibilities determined by Bayes rule, in
a single Bayesian inference on the integrated hierarchical

5The full URL is https://www.youtube.com/playlist?list=PL mlm7M6
3Y7j641Y7QJG3TfSxeZMGOsQ4.

model. The decision rules focus on different levels of the
model. Proponents of either decision rule agree on Bayesian
inference as the recommended way to do data analysis.

Bayesian inference gets us from a prior distribution
across parameter values to a posterior distribution across
parameter values. Making a decision on the basis of the
posterior distribution is a separate step. Don’t confuse the
Bayesian inference with the subsequent decision procedure.
Bayesian inference provides the posterior distribution. The
posterior distribution encodes the exact allocation of relative
credibilities across all the parameter values. The posterior
distribution embodies the complete quantification of uncer-
tainty across the whole parameter space. This is the pri-
mary product and emphasis of Bayesian inference. Bayesian
inference emphasizes quantification of uncertainty, embod-
ied in the posterior distribution over parameters, from which
we simply read off whatever information is relevant.

Prior distribution: innocuous, hazardous,
beneficial

Newcomers to Bayesian data analysis are sometimes suspi-
cious of using a prior distribution because they have heard
rumors that a presumptuous prior can be smuggled into an
analysis and thereby yield any desired posterior distribu-
tion (satirized by Kievit, 2011). Prior distributions have also
been accused of giving unscrupulous analysts extra degrees
of freedom for finagling questionable research practices
(Simmons et al., 2011). These fears are mostly unfounded.
Prior distributions should always be explicitly described and
justified in any reported analysis (see essential points of
reporting a Bayesian analysis in Ch. 25 of Kruschke, 2015).
Priors are usually innocuous, sometimes importantly ben-
eficial, and hazardous only if used carelessly in particular
situations, as explained in the following subsections.

Vague priors for continuous parameter
estimation are innocuous

Consider estimating continuous parameter values such θ in
Fig. 2 or μ and σ in Fig. 3. When the prior is reasonably
broad relative to the posterior, then virtually any broad prior
will yield nearly the identical posterior distribution. For
example, in Fig. 2, if the prior distribution were U-shaped
or gently peaked instead of nearly flat, essentially the same
posterior distribution would be produced (for an example
see Figure 3, p. 305, of Kruschke, 2011). In Fig. 3, if the
prior distribution on μ extended from 50 to 150, or instead
from 0 to 500, the posterior distribution would be the same.
Priors that are broad relative to the posterior distribution are
called vague or only mildly informed by the typical scale of
the data. We recommend the use of these innocuous broad

http://tinyurl.com/PrecisionIsGoal
http://tinyurl.com/PrecisionIsGoal
https://www.youtube.com/playlist?list=PL_mlm7M63Y7j641Y7QJG3TfSxeZMGOsQ4
https://www.youtube.com/playlist?list=PL_mlm7M63Y7j641Y7QJG3TfSxeZMGOsQ4
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priors for typical data analysis in which the focus is on esti-
mation of continuous parameters (Kruschke, 2013, 2015;
Kruschke, Aguinis, & Joo, 2012).

Priors in model comparison must be handled carefully

On the other hand, when doing Bayesian model compar-
ison (e.g., for Bayesian null hypothesis testing), the spe-
cific choice of prior distributions within models and for
the model index is crucial. In model comparison, differ-
ent choices of prior distributions within models can greatly
affect the resulting Bayes factor. Consider for example, the
situation of Fig. 3, for which the null hypothesis is μ = 100.
The posterior distribution on the effect size was shown
in panel A of Fig. 5 and would be essentially unchanged
whether the prior on μ was uniform from 50 to 150 or uni-
form from 0 to 500. But the Bayes factor is highly sensitive
to the choice of alternative prior. Consider the Bayes fac-
tor of the null hypothesis prior versus an alternative uniform
from 0 to 500, and call it BF[0,500]. Consider also the Bayes
factor of the null hypothesis prior versus an alternative uni-
form from 50 to 150, and call it BF[50,150]. It turns out that
BF[0,500] is 5 times larger than BF[50,150]. The reason for
the difference is that the prior credibility of μ values near the
posterior mode of 110 is 5 times larger in the [50,150] prior
than in the [0,500] prior, because the uniform prior must be
diluted over a support that is 5 times wider in the [0,500]
prior than in the [50,150] prior. In other words, when applied
to Bayesian model comparison, and Bayesian null hypothe-
sis testing in particular, different vague priors can yield very
different Bayes factors. Many authors provide examples of
prior sensitivity in Bayes factors (e.g., Gallistel,2009; Kass
& Raftery, 1995; Kruschke, 2011, 2015; Liu & Aitkin, 2008;
Sinharay & Stern, 2002; Vanpaemel, 2010).

Unlike in continuous parameter estimation for which any
reasonably broad prior is innocuous, priors in Bayesian
model comparison must be carefully established, justified,
and examined for sensitivity (i.e., checked for whether the
Bayes factor changes much when the prior changes reason-
ably). The sensitivity analysis helps put boundaries on the
conclusions when there is uncertainty in choice of prior.

Various authors emphasize that the influence of the prior
distribution in Bayesian model comparison is an importantly
positive feature because it forces the theorist to acknowl-
edge that the prior distribution on the parameters is a
central aspect of the expression of the theory (Vanpaemel,
2010; Vanpaemel & Lee, 2012). For example, a theory
that predicts that forgetting should occur within some small
range of decay rates is quite different that a theory that
predicts the decay rate could be anything. For model com-
parison, including null hypothesis testing, we recommend
that the priors of all models begin with a vague proto-
prior that is updated by a modest amount of representative

data, to establish the mildly and equally informed priors
used in the actual model comparison (for an example see
Section 10.6.1, p. 294, of Kruschke, 2015).

Informed priors can be very beneficial

If previous data have established strong prior knowledge
that can inform the prior distribution for new data, then that
prior knowledge should be expressed in the prior distribu-
tion, and it could be a serious blunder not to use it. For
example, consider random testing for illicit drug consump-
tion. Suppose the correct-detection rate of the drug test is
95%, and the false-alarm rate is 5%. If we test a person at
random and the test result is positive, what is the probability
that the person uses the drug? The answer is not necessarily
95%/5% (the Bayes factor), because we must incorporate
the prior probability of drug use in the population from
which the person was randomly sampled. Suppose the prior
probability of drug use is 1%. Then, even with a positive test
result, the posterior probability of drug use is only 16.1%
(which is considerably higher than the prior of 1%, but still
quite low). To interpret the positive drug test only by its hit
rate and false alarm rate (i.e., its Bayes factor), and not to
incorporate the prior probability, would be a serious error
(see http://tinyurl.com/ModelProbUncertainty6).

Informed priors can also be useful when trying to make
strong inferences from small amounts of data. For illustra-
tion, consider a situation in which the Acme Novelty and
Magic Company is known to manufacture two kinds of trick
coins, one of which comes up heads 99% of the time, and
the other of which comes up tails 99% of the time. Suppose
moreover that the two types of trick coins are manufac-
tured in equal numbers. That information constitutes strong
prior knowledge about the possible values of the underly-
ing probability of heads. Now, we are shown a coin from
the company and our goal is to infer which kind it is. We
flip the coin only once (i.e., data with N = 1) and observe
a result of heads. From the single flip we can infer with
very high probability that the coin is the head-biased type,
because that result would happen extremely rarely from the
tail-biased coin.

Prior distributions on parameters can also be useful as
expressions of theory. For example, Vanpaemel and Lee
(2012) showed how a theoretical notion, that attention
should be allocated optimally in categorization (Nosofsky,
1986), could be expressed as a prior distribution over a
formal model’s attention parameter. Thus, rather than just
estimating the parameter from a vague prior, a model that

6The full URL is http://doingbayesiandataanalysis.blogspot.com/2015/
12/lessons-from-bayesian-disease-diagnosis 27.html and a PDF version
is available at https://osf.io/r9zfy/.

http://tinyurl.com/ModelProbUncertainty
http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
https://osf.io/r9zfy/
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assumes optimality can be tested by loading the prior distri-
bution near the assumed value.

One must be careful to apply prior knowledge to new
cases appropriately. Consider, for example, studying the
effect of a “smart drug” on IQ scores. We know with great
certainty from previous administration of many thousands
of IQ tests to the general population that the mean IQ is 100
and the standard deviation is 15. Does that prior knowledge
imply that the prior distribution for analyzing new smart-
drug data should be sharply peaked over μ = 100 and
σ = 15? No, because that previous knowledge applies to
non-smart-drug users, and we do not have much previous
knowledge about IQ scores of smart drug users.

Hierarchical models as a special case of an informed prior

Bayesian methods and software are especially convenient
for analyzing hierarchical models (also known as multi-
level models). In hierarchical models, the probability struc-
ture can be expressed such that the probabilities of values
of some parameters depend on the values of other parame-
ters. A typical case is analyzing data from many individuals
within a treatment group. There are parameters that describe
each individual, and those individual parameters are mod-
eled as coming from a higher-level group distribution, which
has its own parameters. The data from each individual
inform that individual’s parameters, which in turn inform
the group-level parameters, which in turn inform all the
other individuals’ parameters. Thus, all the other individuals
in the present data act as “prior” knowledge for estimat-
ing any particular individual. The result is that estimates
of individuals are rationally shrunken toward the group
mode(s), which reduces spurious outlying estimates that
would otherwise produce false alarms. For introductions to
Bayesian hierarchical models, see Chapter 9 of Kruschke
(2015), the chapter by Kruschke and Vanpaemel (2015),
or the articles by Rouder and Lu (2005) and by Shiffrin
et al. (2008). Vanpaemel (2011) discusses another way to
construct informative priors using hierarchical models.

In summary, the prior distribution (a) is innocuous when
it is broad relative the posterior in continuous parameter
estimation, (b) is crucial and should express meaningful
prior knowledge in model comparison such as null hypothe-
sis testing, and (c) is useful when informed by previous data,
concurrent data, or theory.

Two shifts of emphasis in data analysis

From frequentist to Bayesian

The mathematics of Bayesian analysis has existed for more
than 250 years. The primary formula for Bayesian analysis

is called Bayes’ rule, in honor of the 18th century minister
Thomas Bayes (1701–1761) who first wrote down the sim-
ple relation between marginal and conditional probabilities
(Bayes and Price, 1763). It was the mathematician Pierre-
Simon Laplace (1749–1827) who rediscovered Bayes’ rule
and developed it in sophisticated applications. Some histori-
ans argue that this branch of statistical methods ought to be
named after Laplace (e.g., Dale, 1999; McGrayne, 2011).

As Bayesian mathematics has been around so long, and
arguments in favor of Bayesian analysis have been made
repeatedly over many years, why is Bayesian analysis only
gaining ascendancy now? There are (at least) three main rea-
sons: philosophical, sociological, and computational. In the
early years, many people had philosophical concerns about
the status of the prior distribution, thinking that the prior was
too nebulous and capricious for serious consideration. But
many years of actual use and real-world application have
allowed reality to overcome philosophical anxiety. Another
concern is that Bayesian methods do not control error rates
as indicated by p values (e.g., Mayo & Spanos, 2011). This
concern is countered by repeated demonstrations that error
rates are extremely difficult to pin down because they are
based on sampling and testing intentions (e.g., Kruschke,
2013; Wagenmakers, 2007, and references cited therein).
Bayesian methods were also discouraged by sociological
forces. One of the most influential statisticians of the 20th
century, Ronald Fisher (1890–1962), was a vociferous and
relentless critic of Bayesian methods (and of the people
who used them). Relatively few people had the courage
to investigate Bayesian methods in an era when they were
belittled and dismissed. Perhaps the most important rea-
son that Bayesian methods stayed in the background of
statistical practice was computational. Until the advent of
high-speed computers and associated algorithms, Bayesian
methods could only be applied to relatively simple models
for which formulas could be analytically derived. However,
since the introduction of general-purpose Markov chain
Monte Carlo (MCMC) algorithms in the 1990s, includ-
ing general purpose software such as BUGS (Lunn et al.,
2013), JAGS (Plummer, 2003), and Stan (Stan Develop-
ment Team, 2016), Bayesian methods can be applied to a
huge spectrum of complex (or simple) models with seam-
less facility (for histories of MCMC methods, see Gelfand,
2000; McGrayne, 2011). In summary, the practical results
along with the rational coherence of the approach have
trumped earlier concerns. The remaining resistance stems
from having to displace deeply entrenched and institution-
alized practices (e.g., McKee & Miller, 2015).

From hypothesis testing to estimation and uncertainty

Figure 7 shows a shift of emphasis from frequentist to
Bayesian as a horizontal arrow across columns of a 2 × 2
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Fig. 7 Two shifts of emphasis in data analysis: From frequentist to
Bayesian, marked across columns, and from point-value hypothesis
testing to estimation of magnitude and uncertainty, marked across
rows. The two emphases converge on the lower-right cell: Bayesian
estimation of magnitude and uncertainty

grid. There is a second shift of emphasis in data analysis
marked as a vertical arrow across rows in Fig. 7. This is the
shift from focusing on null hypothesis testing to focusing
on magnitude estimation and quantification of uncertainty.
We already described one motivation for eschewing null
hypothesis testing because it leads to Meehl’s paradox. But
there are many other reasons to avoid hypothesis testing as
the default or only method of analysis. For decades, there
have been repeated warnings in the literature that the arti-
ficial “black and white” thinking of null-hypothesis testing
too easily leads to misinterpretations of data and biased
publication in scientific journals. Recently the American
Statistical Association issued warnings about misinterpret-
ing p values (Wasserstein & Lazar, 2016). Gigerenzer
(2004) has called NHST a “ritual of mindless statistics”
and has also warned that merely replacing p-values with
Bayes factors will not help dislodge analysts from ritualized
black-and-white thinking (Gigerenzer and Marewski, 2015).

Instead of hypothesis testing, many people have pro-
moted a focus on estimation of effect magnitudes and
measures of the uncertainty in those estimates. Within
the frequentist framework, this has recently culminated
in the so-called New Statistics (Cumming 2012, 2014),
as indicated in the lower-left cell of Fig. 7. While we
applaud the goals of the new statistics, namely, to focus
on magnitudes of effects, measures of uncertainty (such
as confidence intervals), and cumulative science such as
meta-analysis, we believe that all the goals can be better
attained through Bayesian methods. There is not room here
to explain the shortcomings of frequentist methods for these
goals, and instead we refer the interested reader to other
sources and specifically the companion article by Kruschke
and Liddell (2017). The convergence of the two shifts of
emphasis leads to the lower-right cell of Fig. 7, which is
Bayesian estimation of parameters such as effect size and
Bayesian quantification of uncertainty in the form of an

explicit posterior distribution on credible parameter values.
Examples of Bayesian estimation of magnitudes and uncer-
tainty were provided earlier in this article in Figs. 2, 3,
and 5.

Model comparison: From frequentist to Bayesian

The table in Fig. 7 assumes we are using a single descriptive
model and nested versions of the model that involve restrict-
ing parameters to null values. This framework encompasses
much of the traditional catalogue of statistical models,
including the generalized linear model that spans varieties
of regression and analysis of variance. For example, the
lower row of the table in Fig. 7 might refer to estimation
of parameters in multiple linear regression, while the upper
row refers to null hypotheses about the regression coef-
ficients in that model. But the framework of Fig. 7 does
not directly embrace the broader structure of model com-
parison that was illustrated in Fig. 4. The table could be
expanded with a third row that refers to model comparison,
to suggest that model comparison is a structural generaliza-
tion of a single traditional model. There are frequentist and
Bayesian approaches to model comparison (e.g., Myung &
Pitt, 1997).

Some things Bayesian data analysis is not

Bayesian data analysis is very attractive because it intu-
itively and explicitly reveals the probabilities of parametric
descriptions of data, and because the methods are very flex-
ible for complex and useful models. But Bayesian methods
are not necessarily a cure for all problems.

Bayesian data analysis is not Bayesian modeling of mind

In the psychological sciences, Bayesian models have been
used extensively not for data analysis but for models
of cognition and brain function (e.g., Chater & Oaksford,
2008; Chater, Tenenbaum, & Yuille, 2006; Griffiths, Kemp,
& Tenenbaum, 2008; Gilet, Diard, & Bessiére, 2011;
Jacobs & Kruschke, 2010; Kording, 2014; Kruschke, 2008;
Perfors, Tenenbaum, Griffiths, & Xu, 2011). Many new-
comers to Bayesian data analysis may have previous expo-
sure to Bayesian models of mind and brain. It would be
a mistake to transfer evaluations of Bayesian models of
mind/brain to Bayesian models of empirical data. Bayesian
methods are the preferred approach to data analysis regard-
less of the viability of any particular Bayesian model of
mind/brain (Kruschke, 2010).

Figure 8 shows different applications of Bayesian meth-
ods in psychological and other sciences. In all three pan-
els of Fig. 8, there is a parameterized model that has
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(A)

 

(B)

(C)

Fig. 8 Three meanings for parameters in Bayesian analysis. A Generic Bayesian data analysis: The model parameters meaningfully describe the
data, without any necessary reference to the processes that produced the data. B Bayesian psychometric analysis: The data are produced by a mind,
and the model parameters are supposed to describe aspects of the mind. C Bayesian model of mind: The mind itself is modeled as a Bayesian
statistician, taking data from the world and updating its parameter values, which represent the knowledge of the mind

probabilities of its parameter values reallocated by Bayesian
inference. What differs across panels is the semantic ref-
erent of the model and its parameters. (A slight variant
of Fig. 8 originally appeared in 2011 at http://tinyurl.com/
BayesianModels.7)

Panel A of Fig. 8 depicts generic data analysis as empha-
sized in the present article. The model and its parameters
describe trends in the data, without any necessary reference
to the processes that generated the data. For example, the
model parameters could indicate the slope of a linear trend
in the data, or the magnitude of a difference between group
means. Panel A indicates this property by the arrow labeled
“describes” pointing from the posterior to the data.

Panel b of Fig. 8 depicts the case of psychometric models.
In this case, the data are known to have been produced by a
mind. For example, the data could be IQ scores, or response
times, or survey choices. Moreover, the model is intended to
describe aspects of the mind, such as scale value for general
intelligence, or a diffusion rate in a model of response times,
or a regression coefficient in an additive model of covariate

7The full URL is http://doingbayesiandataanalysis.blogspot.com/2011/
10/bayesian-models-of-mind-psychometric.html and a PDF version is
available at https://osf.io/mxyck/.

influences in choice. Panel B indicates this property with
an arrow from the posterior distribution pointing to a
“mind” that produced the data. A few recent examples of
Bayesian psychometric models include those reported by
Fox et al. (2015), Lee and Corter (2011), Oravecz et al.
(2014), Vandekerckhove (2014), and Vanpaemel (2009).

Panel C of Fig. 8 depicts the case of Bayesian models
of mind. In these models, the mind itself is conceived as a
Bayesian statistician, taking data from the world and updat-
ing its internal state by using Bayesian inference. The model
and its parameters represent the knowledge of the mind,
and Bayesian inference represents the processing through
which the mind makes inferences, either quickly for percep-
tion or relatively slowly for learning. Panel C indicates this
by enclosing the Bayesian processing inside a box labeled
“mind.” Bayesian models of mind assert that the mind is
behaving like a Bayesian statistician, using some internal
model of the world. There is an infinite family of possible
models, so a failure of any one candidate Bayesian model
to mimic human behavior does not disconfirm all possible
Bayesian models. Moreover, no particular Bayesian model
must explain how Bayesian inference is processed at the
algorithmic or neural level.

Our central point of this section is that Bayesian mod-
els of data analysis (panel A), and Bayesian estimation of

http://tinyurl.com/BayesianModels
http://tinyurl.com/BayesianModels
http://doingbayesiandataanalysis.blogspot.com/2011/10/bayesian-models-of-mind-psychometric.html
http://doingbayesiandataanalysis.blogspot.com/2011/10/bayesian-models-of-mind-psychometric.html
https://osf.io/mxyck/
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psychometric models (panel B), are appropriate and useful
regardless of whether or not any particular Bayesian model
of mind (panel C) is an accurate description of human cogni-
tion (Kruschke, 2010). Whether or not you are an enthusiast
of Bayesian models of mind, you would be well served to
be a Bayesian analyst of data.

Bayesian data analysis is not a panacea

Bayesian data analysis is a coherent, cogent, and intuitive
way to reallocate credibility across parameter values in
descriptive models of data. Bayesian analysis solves a lot of
problems in traditional frequentist analyses involving p val-
ues and confidence intervals (e.g., Kruschke, 2013; Ch. 11
of Kruschke, 2015; Kruschke & Liddell, 2017). But because
frequentist methods are institutionally entrenched and dif-
ficult to displace, Bayesian methods have sometimes been
presented with a degree of zeal that might inadvertently
give newcomers the false impression that Bayesians claim
to solve all problems. Bayesian analysis does not auto-
matically create correct interpretations, just as computing
an arithmetic average does not automatically create cor-
rect interpretations. In this section we briefly discuss how
Bayesian analysis relates to the problems of false alarm
rates and bias introduced by selectivity of data.

False alarm rates

Statistical practice in the 20th century was hugely influ-
enced by Ronald A. Fisher, and in particular his work was
central for establishing p < .05 as the criterion for declar-
ing significance (Fisher, 1925), although Fisher might not
have endorsed the ritual of checking p values that is institu-
tionalized in present practice (Gigerenzer et al., 2004). The
criterion of p < .05 says that we should be willing to tol-
erate a 5% false alarm rate in decisions to reject the null
value. In general, frequentist decision rules are driven by a
desire to limit the probability of false alarms. The proba-
bility of false alarm (i.e., the p value) is based on the set
of all possible test results that might be obtained by sam-
pling fictitious data from a particular null hypothesis in a
particular way (such as with fixed sample size or for fixed
duration) and examining a particular suite of tests (such as
various contrasts among groups). Because of the focus on
false alarm rates, frequentist practice is replete with meth-
ods for adjusting decision thresholds for different suites of
intended tests (e.g., Maxwell & Delaney, 2004, Ch. 5) or for
different stopping intentions (e.g., Sagarin, Ambler, & Lee,
2014).

Bayesian decisions are not based on false alarm rates
from counterfactual sampling distributions of hypothetical

data. Instead, Bayesian decisions are based on the posterior
distribution from the actual data. But ignoring false alarms
does not eliminate them. After all, false alarms are caused
by random conspiracies of rogue data that happen to be
unrepresentative of the population from which they were
sampled. Nevertheless, Bayesian analysis can help mitigate
false alarms. In particular, Bayesian software makes it rel-
atively easy to implement and interpret hierarchical models
that can use all the data to shrink outlying parameter esti-
mates and reduce false alarms. In other words, Bayesian
analysis reduces false alarms by letting the data and model
structure inform the parameter estimates, instead of restrict-
ing false alarm rates through some arbitrary declaration of
intended tests, post hoc tests, and so on (Gelman et al.,
2012).

Biased data: Outliers, censoring, optional stopping,
covariate selection, replication crisis

Data can be biased in many ways, including “questionable
research practices” such as excluding inconvenient con-
ditions or stopping data collection whenever the desired
result is found (John et al., 2012). If the data are biased or
unrepresentative of the population that they are supposed to
represent, then no analysis can be certain of making cor-
rect inferences about the population. Garbage in, garbage
out. However, analysts can attempt to model the bias and
account for it in the estimation of the other meaningful
parameters. Because of the flexibility of creating models in
Bayesian computer software, and the direct interpretation
of posterior distributions, some types of biased data might
be usefully interpreted by Bayesian methods (e.g., Guan &
Vandekerckhove, 2016).

Outliers

Most traditional models of metric data assume that the data
are normally distributed. If the data have severe outliers rel-
ative to a normal distribution, conventional practice is to
transform the data or to remove the outliers from the data
(e.g., Osborne & Overbay, 2004, and references therein).
Transforming data has limitations, and removing data is,
by definition, selecting the data to fit the model. If the
outlying values are authentic representations of the under-
lying population, removing them constitutes selective bias
and artificially reduces the variance in the data. Instead
of removing inconvenient data, Bayesian software makes
it easy to use non-normal distributions to model the data.
In particular, heavy-tailed distributions are seamlessly used,
and outliers are naturally accommodated (e.g., Kruschke,
2013, 2015, and references cited therein).
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Censoring

Many studies involve censored data. For example, in a
response-time experiment, a stimulus appears and the sub-
ject must respond as quickly as possible. There may be trials
during which the subject is “on task” but does not respond
within the maximum duration that the researcher is willing
to wait. The result of the trial is not a specific response time,
but the trial does indicate that the response time is at least
as large as the maximum allowed duration and therefore the
datum should not be omitted from the analysis. Omitting
censored data would be artificially biasing the data toward
small values. Censored data also frequently occur in survival
analysis, for which interest is in how long a patient survives
after treatment. Many patients may still be alive at the time
the researcher wants to do the analysis, and so the informa-
tion from surviving subjects is censored. But the still-alive
subjects do provide information, even if not specific sur-
vival durations, and therefore the censored data should not
be omitted from the analysis, again because doing so could
be selectively biasing the data. Bayesian software makes it
easy to model censored data (e.g., Kruschke, 2015, Ch. 25).
Essentially, the censored data values are imputed as if they
were estimated parameters, with a constraint imposed by the
known data cutoffs.

Optional stopping

Many researchers collect data until the results show a
desired significant effect (John et al., 2012; Yu et al., 2014).
That is, tests of significance are run as data are being col-
lected, and data collection continues until the sought-after
effect is found to be significant or until patience expires.
Intuitively, there seems to be nothing wrong with this sort
of “optional stopping,” because the new data collected after
previous data were tested should be utterly uninfluenced
by the previous data or by the analysis. But this intu-
ition fails to recognize that stopping will often be falsely
triggered by randomly extreme data, and once the data col-
lection has stopped, the termination precludes the collection
of subsequent data that would compensate for the unrepre-
sentative extreme data. Thus, collecting data until reaching
significance biases the data toward extreme values.

Optional stopping might not be such a problem when
the stopping criterion is based on Bayesian statistics. The
Bayes factor, for comparing a null-hypothesis prior against
an alternative-hypothesis prior, is not affected by the bias
in the data introduced by optional stopping. The reason is
that the null-hypothesis parameter value and any particu-
lar alternative-hypothesis parameter value would generate
extreme data at the same relative rate regardless of whether

you wait for those extreme data or not (Rouder, 2014). On
the other hand, it is still true that an estimate of the mag-
nitude of the effect can be affected by Bayesian optional
stopping, although the bias may usually be small. See exam-
ples in Kruschke (2015, Ch. 13), Sanborn and Hills (2014),
and Schönbrodt et al. (2016). The reason for bias in the
estimates is that the termination of data collection could be
triggered in small samples by unrepresentative extreme val-
ues that aren’t yet compensated by values in the opposite
direction, while termination of data collection for large sam-
ples can be biased by long sequences of unrepresentative
modest values in the early trials (Schönbrodt et al., 2016).
Thus, if you are interested in the magnitude of the effect,
optional stopping may produce somewhat misleading esti-
mates in single studies, even when analyzed by Bayesian
methods. The biases should wash out across studies, but
the effect of Bayesian optional stopping for meta-analysis
across studies is a topic for ongoing research (Schönbrodt
et al., 2016).

Bayesian analysis can make it easier to pursue goals other
than hypothesis testing. In particular, because the Bayesian
posterior distribution directly reveals the precision of the
parameter estimate (e.g., by the width of the 95% HDI),
Bayesian analysis makes it sensible to collect data until a
desired degree of precision has been obtained. For most
models, stopping when having achieved a desired precision
does not bias the estimate of the parameters. The goal of
precision is typical in political polling, for which pollsters
sample a number of people sufficient to achieve a desired
degree of precision in the estimate. This is also the moti-
vation behind the accuracy-in-parameter-estimation (AIPE)
approach to sample size planning (Maxwell et al., 2008;
Kelley, 2013). (Here we conflate accuracy and precision
merely for brevity.) Bayesian analysis makes the goal of pre-
cision particularly appealing because precision is measured
by the posterior distribution instead of by frequentist con-
fidence intervals, which suffer various infelicities that will
not be recited here. Further discussion and examples can be
found in Chapter 13 of Kruschke (2015) (see also the video
at http://tinyurl.com/PrecisionIsGoal8).

Covariate selection

In multiple regression analysis, sometimes researchers
explore many candidate covariates and report only those
that appear to be significant. The selective exclusion of
some covariates biases the data and can lead to excessive

8The full URL is https://www.youtube.com/playlist?list=PL mlm7M6
3Y7j641Y7QJG3TfSxeZMGOsQ4.

http://tinyurl.com/PrecisionIsGoal
https://www.youtube.com/playlist?list=PL_mlm7M63Y7j641Y7QJG3TfSxeZMGOsQ4
https://www.youtube.com/playlist?list=PL_mlm7M63Y7j641Y7QJG3TfSxeZMGOsQ4
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false alarms. Bayesian analysis does not prevent a crafty
person from fishing through a lot of candidate covariates
and then reporting only the few that are strongly predic-
tive. But Bayesian analysis does allow the forthright analyst
to include all candidate covariates and implement hierar-
chical structure that shrinks regression coefficients, thereby
reducing false alarms, and that simultaneously gives explicit
inclusion probabilities of the various candidate regressors
(e.g., Ch. 18 Kruschke, 2015, and references cited therein).

The crisis of replication

Some forms of bias in data can be usefully addressed with
Bayesian analysis. But Bayesian analysis cannot magically
undo all bias in the data that are delivered to it, and Bayesian
analysis cannot prevent researchers from selectively biasing
the data that get analyzed. In particular, Bayesian analysis
by itself cannot solve the recently headlined “replication cri-
sis” across the sciences (e.g., Ledgerwood, 2014; Pashler &
Wagenmakers, 2012). The replication crisis is largely a con-
sequence of biased selection of which data get analyzed and
which data get published, while Bayesian analysis is pri-
marily a means for analyzing data that have already been
selected for analysis.

One important way that Bayesian analysis could help
the replication crisis is by giving researchers tools to focus
on precision (and accuracy) of parameter estimation as the
main goal for data collection and as a key criterion for publi-
cation, instead of setting the goal to be rejecting or accepting
a null value (as explained in Ch. 13 of Kruschke, 2015, and
in the talk at http://tinyurl.com/PrecisionIsGoal9).

It is important to note, however, that the main reasons
to do Bayesian analysis have little directly to do with solv-
ing the replication crisis. Many people have been promoting
a transition away from null hypothesis significance testing
to Bayesian methods for decades, long before the recent
replication crisis made headlines.

Where to learn more

Some of the main attractions of Bayesian analysis are (a) the
transparent interpretation of the posterior distribution in
terms of most credible parameter values and their uncer-
tainty, without using sampling distributions (i.e., without p

values and p-value-based confidence intervals), and (b) the
ability in Bayesian software to create flexible and meaning-
ful models that are appropriate for describing the data. We
hope you are convinced that Bayesian methods provide rich

9The full URL is https://www.youtube.com/playlist?list=PL mlm7M6
3Y7j641Y7QJG3TfSxeZMGOsQ4.

and intuitive interpretations of data, and that it would be
worth your time to learn more.

You can learn more from articles, books, and workshops.
Numerous workshops and short courses in Bayesian meth-
ods are offered throughout the year and around the world
for audiences from various disciplines.

The special issue of this journal, in which the present arti-
cle appears, has several tutorial articles on Bayesian anal-
ysis, including the companion to this article that explains
frequentist and Bayesian analyses side by side (Kruschke
and Liddell, 2017), along with Bayesian meta-analysis and
power analysis. Other introductory articles that focus on
parameter estimation and highest density intervals include
Kruschke (2013), Kruschke et al. (2012), and Zyphur and
Oswald (2015). A simple web app for comparing two
groups, which runs in a web browser without needing to
download any software, is available at http://www.sumsar.
net/best online/ (created by Rasmus Bååth). The app can
be very instructive to use with your own data. You can
watch the MCMC representation of the posterior distri-
bution emerge, and then interpret the posterior distribu-
tion in terms of meaningful parameter estimates and their
uncertainties.

If you are interested in Bayes factors for hypothesis test-
ing (i.e., the upper-right cell in Fig. 7), there are online
calculators and downloadable software available. Online
Bayes-factor calculators include those by Rouder and col-
leagues at http://pcl.missouri.edu/bayesfactor and by Dienes
at http://tinyurl.com/DienesBayesFactor.10 Downloadable
software for Bayes factors in the R language is avail-
able at http://cran.r-project.org/web/packages/BayesFactor/
index.html, authored by Morey, Rouder, & Jamil. A pack-
age for frequentist and Bayesian analyses with pull-down
menus, called JASP, is in development and available at
https://jasp-stats.org/. A related nascent system, called
Jamovi, invites contributed modules and is available at
https://www.jamovi.org/.

Several textbooks are available for learning modern
Bayesian methods. A thorough introduction that focuses on
concepts and applications with a relatively small amount
of mathematics is provided by Kruschke (2015). That book
begins with very basic notions and gradually builds up to
sophisticated models for real data analysis with an exten-
sive suite of computer programs. The programs and exercise
solutions are available at the book’s web site, https://sites.
google.com/site/doingbayesiandataanalysis/. More mathe-
matically advanced books in applied data analysis, but still
relatively accessible, are provided by Gelman et al. (2013),
McElreath (2016), and Ntzoufras (2009). An introduction

10The full URL is http://www.lifesci.sussex.ac.uk/home/Zoltan Dienes/
inference/Bayes.htm.
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directed at cognitive scientists is provided by Lee and
Wagenmakers (2014). For an accessible mathematical intro-
duction, see the books by Bolstad (2009, 2016). Scholarly
textbooks include those by Gill (2014) and Jackman (2009).
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