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 test is sup{Pr( XA- XB> a) 1.75 ' P, = P2 ' 1}-
 The power function K(p1,P2, n1, n2) is Pr(XA -XB I > a).
 To construct the tables, we evaluate the power function (for

 given n1 and n2 and a = .1) at the points (P1,P2) in

 P = {(m1/100,m2/100) | 75 ' m1,m2 ' 100

 and Iml-m21 2 10},

 leaving out the so-called indifference region (see Bickel and

 Doksum 1977), that is, those points (Pi,P2) such that
 IP1 - P21 < .1. The average power reported in the tables
 is then the average value of K over the set P. The size

 reported is similarly computed by taking the supremum over
 a finite set.

 One effect of class size on the test is that in general, large
 imbalances in class size are associated with larger test size

 and small imbalances with smaller test size. Indeed, when
 the normal approximation applies, one can show that among
 all n1, n2 with n1 + n2 = k, k fixed, the test has minimum

 size when n1 = n2 = k/2 for k even and n1 = [k/2] or n1
 = [k/2] + 1 when k is odd. To see this, note that under
 Ho,

 Pr(XA-XB> . 1) + Pr(XA- XB < -.1)

 = Pr((XA- XB)/ 1\p/q(1/nj + l/n2) 2 1)

 + Pr((XA - XB)/ /pq(1nl + 1/n2) ? -1)

 = Pr(Z 2 1) + Pr(Z ? -1),

 where 1 = . 1/[pq(1/n1 + 1/n2)] /2 and Z is a standard normal
 random variable. Using the usual techniques from calculus

 gives the desired result.

 In Table 5 we find a similar pattern using the pdf given
 in (8) and the computer. Note the small percentage variation

 in mean power for the values in the table in comparison to
 the large percentage variation in size. The difference be-

 tween class sizes (50, 50) and (5, 95) is a small increase
 in power but a fourfold increase in size.

 [Received October 1986. Revised June 1987.]
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 Thirteen Ways to Look at the Correlation Coefficient

 JOSEPH LEE RODGERS and W. ALAN NICEWANDER*

 In 1885, Sir Francis Galton first defined the term "regres-

 sion" and completed the theory of bivariate correlation. A

 decade later, Karl Pearson developed the index that we still

 use to measure correlation, Pearson's r. Our article is written

 in recognition of the 100th anniversary of Galton's first

 discussion of regression and correlation. We begin with a

 brief history. Then we present 13 different formulas, each

 of which represents a different computational and concep-

 tual definition of r. Each formula suggests a different way

 of thinking about this index, from algebraic, geometric, and

 trigonometric settings. We show that Pearson's r (or simple

 functions of r) may variously be thought of as a special type

 of mean, a special type of variance, the ratio of two means,

 the ratio of two variances, the slope of a line, the cosine of

 an angle, and the tangent to an ellipse, and may be looked

 at from several other interesting perspectives.

 INTRODUCTION

 We are currently in the midst of a "centennial decade"

 for correlation and regression. The empirical and theoretical

 developments that defined regression and correlation as sta-

 tistical topics were presented by Sir Francis Galton in 1885.

 Then, in 1895, Karl Pearson published Pearson's r. Our

 article focuses on Pearson's correlation coefficient, pre-

 senting both the background and a number of conceptual-

 izations of r that will be useful to teachers of statistics.

 We begin with a brief history of the development of

 correlation and regression. Following, we present a longer

 review of ways to interpret the correlation coefficient. This

 presentation demonstrates that the correlation has developed

 into a broad and conceptually diverse index; at the same

 time, for a 100-year-old index it is remarkably unaffected

 by the passage of time.

 The basic idea of correlation was anticipated substantially

 before 1885 (MacKenzie 1981). Pearson (1920) credited

 Gauss with developing the normal surface of n correlated

 variates in 1823. Gauss did not, however, have any partic-

 ular interest in the correlation as a conceptually distinct

 notion; instead he interpreted it as one of the several pa-

 rameters in his distributional equations. In a previous his-

 *Joseph Lee Rodgers is Associate Professor and W. Alan Nicewander

 is Professor and Chair, Department of Psychology, University of Okla-

 homa, Norman, Oklahoma 73019. The authors thank the reviewers, whose

 comments improved the article.

 ? 1988 American Statistical Association The American Statistician, February 1988, Vol. 42, No. 1 59

This content downloaded from 
�������������169.226.92.8 on Sun, 04 Apr 2021 15:47:17 UTC�������������� 

All use subject to https://about.jstor.org/terms



 torical paper published in 1895, Pearson credited Auguste
 Bravais, a French astronomer, with developing the bivariate

 normal distribution in 1846 (see Pearson 1920). Bravais

 actually referred to one parameter of the bivariate normal
 distribution as "une correlation," but like Gauss, he did not
 recognize the importance of the correlation as a measure of

 association between variables. [By 1920, Pearson had re-

 scinded the credit he gave to Bravais. But Walker (1929)

 and Seal (1967) reviewed the history that Pearson both re-

 ported and helped develop, and they supported Bravais's
 claim to historical precedence.] Galton's cousin, Charles
 Darwin, used the concept of correlation in 1868 by noting
 that "all the parts of the organisation are to a certain extent

 connected or correlated together." Then, in 1877, Galton

 first referred to "reversion" in a lecture on the relationship

 between physical characteristics of parent and offspring seeds.

 The "law of reversion" was the first formal specification

 of what Galton later renamed "regression."

 During this same period, important developments in phi-

 losophy also contributed to the concepts of correlation and

 regression. In 1843, the British philosopher John Stuart Mill

 first presented his "Five Canons of Experimental Inquiry."
 Among those was included the method of concomitant vari-

 ation: "Whatever phenomenon varies in any manner when-

 ever another phenomenon varies in some particular manner,

 is either a cause or an effect of that phenomenon, or is

 connected with it through some fact of causation." Mill

 suggested three prerequisites for valid causal inference (Cook

 and Campbell 1979). First, the cause must temporally pre-
 cede the effect. Second, the cause and effect must be related.
 Third, other plausible explanations must be ruled out. Thus

 the separability of correlation and causation and the spec-

 ification of the former as a necessary but not sufficient

 condition for the latter were being recognized almost si-

 multaneously in the established discipline of philosophy and

 the fledgling discipline of biometry.

 By 1885 the stage was set for several important contri-

 butions. During that year, Galton was the president of the

 Anthropological Section of the British Association. In his

 presidential address, he first referred to regression as an

 extention of the "law of reversion. " Later in that year (Gal-

 ton 1885) he published his presidential address along with

 the first bivariate scatterplot showing a correlation (Fig. 1).

 In this graph he plotted the frequencies of combinations of

 children's height and parents' height. When he smoothed

 the results and then drew lines through points with equal

 frequency, he found that "lines drawn through entries of

 the same value formed a series of concentric and similar

 ellipses." This was the first empirical representation of the

 isodensity contour lines from the bivariate normal distri-

 bution. With the assistance of J. D. Hamilton Dickson, a

 Cambridge mathematician, Galton was able to derive the

 theoretical formula for the bivariate normal distribution.
 This formalized mathematically the topic on which Gauss

 and Bravais had been working a half century before. Pearson

 (1920) stated that "in 1885 Galton had completed the theory

 of bi-variate normal correlation" (p. 37).

 In the years following 1885, several additional events

 added mathematical import to Galton's 1885 work. In 1888,

 Galton noted that r measures the closeness of the "co-re-
 lation," and suggested that r could not be greater than 1

 (although he had not yet recognized the idea of negative
 correlation). Seven years later, Pearson (1895) developed

 the mathematical formula that is still most commonly used

 DIAGRAM BASED ON TABLE I.
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 Figure 1. The First Bivariate Scatterplot (from Galton 1885).
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 Table 1. Landmarks in the History of Correlation and Regression

 Date Person Event

 1823 Carl Friedrich Gauss, German mathematician Developed the normal surface of N correlated variates.

 1843 John Stuart Mill, British philosopher Proposed four canons of induction, including concomitant vari-
 ation.

 1846 Auguste Bravais, French naval officer and astronomer Referred to "une correlation," worked on bivariate normal distri-
 bution.

 1868 Charles Darwin, Galton's cousin, British natural philosopher "All parts of the organisation are ... connected or correlated."

 1877 Sir Francis Galton, British, the first biometrician First discussed "reversion," the predecessor of regression.

 1885 Sir Francis Galton First referred to "regression."
 Published bivariate scatterplot with normal isodensity lines, the

 first graph of correlation.
 "Completed the theory of bi-variate normal correlation." (Pear-

 son 1920)

 1888 Sir Francis Galton Defined r conceptually, specified its upper bound.

 1895 Karl Pearson, British statistician Defined the (Galton-) Pearson product-moment correlation
 coefficient.

 1920 Karl Pearson Wrote "Notes on the History of Correlation."

 1985 Centennial of regression and correlation

 to measure correlation, the Pearson product-moment cor-

 relation coefficient. In historical perspective, it seems more

 appropriate that the popular name for the index should be
 the Galton-Pearson r. The important developments in the
 history of correlation and regression are summarized in
 Table 1.

 By now, a century later, contemporary scientists often
 take the correlation coefficient for granted. It is not appre-

 ciated that before Galton and Pearson, the only means for
 establishing a relationship between variables was to educe
 a causative connection. There was no way to discuss-let
 alone measure-the association between variables that lacked

 a cause-effect relationship. Today, the correlation coeffi-

 cient-and its associated regression equation-constitutes

 the principal statistical methodology for observational ex-
 periments in many disciplines. Carroll (1961), in his pres-

 idential address to the Psychometric Society, called the
 correlation coefficient "one of the most frequently used tools

 of psychometricians . . . and perhaps also one of the most
 frequently misused" (p. 347). Factor analysis, behavioral

 genetics models, structural equations models (e.g., LIS-

 REL), and other related methodologies use the correlation

 coefficient as the basic unit of data.

 This article focuses on the Pearson product-moment cor-

 relation coefficient. Pearson's r was the first formal cor-

 relation measure, and it is still the most widely used measure

 of relationship. Indeed, many "competing" correlation in-

 dexes are in fact special cases of Pearson's formula. Spear-

 man's rho, the point-biserial correlation, and the phi coefficient

 are examples, each computable as Pearson's r applied to
 special types of data (e.g., Henrysson 1971).

 Our presentation will have a somewhat didactic flavor.
 On first inspection, the measure is simple and straightfor-

 ward. There are surprising nuances of the correlation coef-
 ficient, however, and we will present some of these. Following
 Pearson, our focus is on the correlation coefficient as a

 computational index used to measure bivariate association.
 Whereas a more statistically sophisticated appreciation of
 correlation demands attention to the sampling model as-

 sumed to underlie the observations (e.g., Carroll 1961; Marks

 1982), as well as understanding of its extension to multiple

 and partial correlation, our focus will be more basic. First,
 we restrict our primary interest to bivariate settings. Second,

 most of our interpretations are distribution free, since com-

 putation of a sample correlation requires no assumptions

 about a population (see Nefzger and Drasgow 1957). For
 consideration of the rnany problems associated with the

 inferential use of r (restriction of range, attenuation, etc.)

 we defer to other treatments (e.g., Lord and Novick 1968).

 We present 13 different ways to conceptualize this most
 basic measure of bivariate relationship. This presentation
 does not claim to exhaust all possible interpretations of the

 correlation coefficient. Others certainly exist, and new ren-

 derings will certainly be proposed.

 1. CORRELATION AS A FUNCTION OF RAW

 SCORES AND MEANS

 The Pearson product-moment correlation coefficient is a

 dimensionless index, which is invariant to linear transfor-

 mations of either variable. Pearson first developed the math-

 ematical formula for this important measure in 1895:

 - (Xi X) (Yj- Y)

 [ (Xi - X)2 (Yi - Y)2]1/2

 This, or some simple algebraic variant, is the usual for-

 mula found in introductory statistics textbooks. In the nu-

 merator, the raw scores are centered by subtracting out the

 mean of each variable, and the sum of cross-products of the

 centered variables is accumulated. The denominator adjusts

 the scales of the variables to have equal units. Thus Equation

 (1.1) describes r as the centered and standardized sum of

 cross-product of two variables. Using the Cauchy-Schwartz
 inequality, it can be shown that the absolute value of the

 numerator is less than or equal to the denominator (e.g.,

 Lord and Novick 1968, p. 87); therefore, the limits of + 1
 are established for r. Several simple algebraic transforma-

 tions of this formula can be used for computational purposes.
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 2. CORRELATION AS STANDARDIZED

 COVARIANCE

 The covariance, like the correlation, is a measure of linear

 association between variables. The covariance is defined on

 the sum of cross-products of the centered variables, unad-

 justed for the scale of the variables. Although the covariance

 is often ignored in introductory textbooks, the variance (which

 is not) is actually a special case of the covariance-that is,

 the variance is the covariance of a variable with itself. The

 covariance of two variables is unbounded in infinite pop-

 ulations, and in the sample it has indeterminant bounds (and
 unwieldy interpretation). Thus the covariance is often not

 a useful descriptive measure of association, because its value

 depends on the scales of measurement for X and Y. The

 correlation coefficient is a rescaled covariance:

 r = sxylsxsy, (2.1)

 where Sxy is the sample covariance, and Sx and sy are sample
 standard deviations. When the covariance is divided by the

 two standard deviations, the range of the covariance is re-

 scaled to the interval between - 1 and + 1. Thus the inter-

 pretation of correlation as a measure of relationship is usu-

 ally more tractable than that of the covariance (and different

 correlations are more easily compared).

 3. CORRELATION AS STANDARDIZED SLOPE

 OF THE REGRESSION LINE

 The relationship between correlation and regression is
 most easily portrayed in

 r = by.x(sx/sy) = bx.(sylsx), (3.1)

 where by.x and bx.y are the slopes of the regression lines
 for predicting Y from X and X from Y, respectively. Here,
 the correlation is expressed as a function of the slope of

 either regression line and the standard deviations of the two
 variables. The ratio of standard deviations has the effect of

 rescaling the units of the regression slope into units of the

 correlation. Thus the correlation is a standardized slope.
 A similar interpretation involves the correlation as the

 slope of the standardized regression line. When we stan-
 dardize the two raw variables, the standard deviations be-
 come unity and the slope of the regression line becomes the
 correlation. In this case, the intercept is 0, and the regression
 line is easily expressed as

 zy = r zx. (3.2)

 From this interpretation, it is clear that the correlation re-

 scales the units of the standardized X variable to predict

 units of the standardized Y variable. Note that the slope of

 the regression of zy on Zx restricts the regression line to fall
 between the two diagonals portrayed in the shaded region

 of Figure 2. Positive correlations imply that the line will
 pass through the first and third quadrants; negative corre-

 lations imply that it will pass through the second and fourth

 quadrants. The regression of Zx on Zy has the same angle

 with the Y axis that the regression of Zy on Zx has with the

 X axis, and it will fall in the unshaded region of Figure 2,

 as indicated.

 4. CORRELATION AS THE GEOMETRIC MEAN

 OF THE TWO REGRESSION SLOPES

 The correlation may also be expressed as a simultaneous

 function of the two slopes of the unstandardized regression

 lines, by.x and bx.y. The function is, in fact, the geometric
 mean, and it represents the first of several interpretations

 of r as a special type of mean:

 r = + .x. (4.1)

 This relationship may be derived from Equation (3.1) by

 multiplying the second and third terms in the equality to

 give r2, canceling the standard deviations, and taking the

 square root.

 There is an extension of this interpretation involving mul-

 tivariate regression. Given the matrices of regression coef-

 ficients relating two sets of variables, By.x and Bx.y, the
 square roots of the eigenvalues of the product of these ma-

 trices are the canonical correlations for the two sets of vari-

 ables. These values reduce to the simple correlation coefficient

 when there is a single X and a single Y variable.

 5. CORRELATION AS THE SQUARE ROOT OF
 THE RATIO OF TWO VARIANCES (PROPORTION

 OF VARIABILITY ACCOUNTED FOR)

 Correlation is sometimes criticized as having no obvious

 interpretation for its units. This criticism is mitigated by

 squaring the correlation. The squared index is often called

 the coefficient of determination, and the units may bee in-

 terpreted as proportion of variance in one variable accounte!d

 for by differences in the other [see Ozer (1985) for a dis-
 cussion of several different interpretations of the coefficient
 of determination]. We may partition the total sum of squares

 for Y (SSTOT) into the sum of squares due to regression
 (SSREG) and the sum of squares due to error (SSERR). The

 variability in X accounted for by differences in Y is the ratio
 of SSREG to SSTOT, and r is the square root ojf that ratio:

 r= VSYR - Y)2(YT - Y) ST

 Equivalently, the numerator and denominator of this
 equation may be divided by (N - 1)1/2, and r becomes the

 square root of the ratio of the variances (or the ratio of the
 standard deviations) of the predicted and observed variables:

 r = =I = SY/Sy. (5.1)

 (Note that S2 is a biased estimate of o3, whereas S2 is
 unbiased.) This interpretation is the one that motivated Pear-
 son's early conceptualizations of the index (see Mulaik 1972,

 p. 4). The correlation as a ratio of two variances may be
 compared to another interpretation (due to Galton) of the
 correlation as the ratio of two means. We will present that

 interpretation in Section 13.

 6. CORRELATION AS THE MEAN CROSS-

 PRODUCT OF STANDARDIZED VARIABLES

 Another way to interpret the correlation as a mean (see

 Sec. 4) is to express it as the average cross-product of the

 standardized variables:
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 r = zxz yIN.- (6.1)

 Equation (6.1) can be obtained directly by dividing both the
 numerator and denominator in Equation (1. 1) by the product
 of the two sample standard deviations. Since the mean of
 a distribution is its first moment, this formula gives insight
 into the meaning of the "product-moment" in the name of
 the correlation coefficient.
 The next two portrayals involve trigonometric interpre-

 tations of the correlation.

 7. CORRELATION AS A FUNCTION OF THE
 ANGLE BETWEEN THE TWO STANDARDIZED

 REGRESSION LINES

 As suggested in Section 3, the two standardized regres-
 sion lines are symmetric about either diagonal. Let the angle
 between the two lines be /8 (see Fig. 2). Then

 r = sec(,3) ? tan(,3). (7.1)

 A simple proof of this relationship is available from us.
 Equation (7.1) is not intuitively obvious, nor is it as useful
 for computational or conceptual purposes as some of the
 others. Its value is to show that there is a systematic rela-
 tionship between the correlation and the angular distance
 between the two regression lines. The next interpretation-
 also trigonometric-has substantially more conceptual value.

 8. CORRELATION AS A FUNCTION OF THE
 ANGLE BETWEEN THE TWO

 VARIABLE VECTORS

 The standard geometric model to portray the relationship
 between variables is the scatterplot. In this space, obser-
 vations are plotted as points in a space defined by variable
 axes. An "inside out" version of this space-usually called
 "person space"-can be defined by letting each axis rep-
 resent an observation. This space contains two points-one
 for each variable-that define the endpoints of vectors in
 this (potentially) huge dimensional space. Although the mul-
 tidimensionality of this space precludes visualization, the
 two variable vectors define a two-dimensional subspace that
 is easily conceptualized.

 If the variable vectors are based on centered variables,
 then the correlation has a straightforward relationship to the
 angle a between the variable vectors (Rodgers 1982):

 r= cos(a). (8.1)

 When the angle is 0, the vectors fall on the same line and
 cos(a) = ? 1. When the angle is 90?, the vectors are per-
 pendicular and cos(a) = 0. [Rodgers, Nicewander, and
 Toothaker (1984) showed the relationship between orthog-
 onal and uncorrelated variable vectors in person space.]

 zx: rZy

 zy

 z r
 .. . . . . . . x

 Figure 2 The Geometry of Bivariate Correlation for Standardized....Variable.
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 Visually, it is much easier to view the correlation by

 observing an angle than by looking at how points cluster
 about the regression line. In our opinion, this interpretation

 is by far the easiest way to "see" the size of the correlation,

 since one can directly observe the size of an angle between

 two vectors. This inside-out space that allows r to be rep-

 resented as the cosine of an angle is relatively neglected as

 an interpretational tool, however. Exceptions include a num-

 ber of factor-analytic interpretations, Draper and Smith's

 (1981, pp. 201-203) geometric portrayals of multiple

 regression analysis, and Huck and Sandler (1984, p. 52).

 Fisher also used this space quite often to conceptualize his

 elegant statistical insights (see Box 1978).

 9. CORRELATION AS A RESCALED VARIANCE

 OF THE DIFFERENCE BETWEEN

 STANDARDIZED SCORES

 Define zy - zx as the difference between standardized X
 and Y variables for each- observation. Then

 r = I - s 2 /)2. (9.1)

 This can be shown by starting with the variance of a dif-

 ference score: s2_X = s2 + 52 - 2rsxsy. Since the stan-
 dard deviations and variances become unity when the variables

 are standardized, we can easily solve for r to get Equation

 (9.1).
 It is interesting to note that in this equation, since the

 correlation is bounded by the interval from - 1 to + 1, the

 variance of this difference score is bounded by the interval

 from 0 to 4. Thus the variance of a difference of standardized

 scores can never exceed 4. The upper bound for the variance

 is achieved when the correlation is - 1.

 We may also define r as the variance of a sum of stan-

 dardized variables:

 r= s(zY+zx)/2 - 1. (9.2)

 Here, the variance of the sum also ranges from 0 to 4, and

 the upper bound is achieved when the correlation is + 1.

 The value of this ninth interpretation is to show that the

 correlation is a linear transformation of a certain type of

 variance. Thus, given the correlation, we can directly define
 the variance of either the sum or difference of the stan-

 dardized variables, and vice versa.

 All nine of the preceding interpretations of the correlation

 coefficient were algebraic and trigonometric in nature. No

 distributional assumptions were made about the nature of

 the univariate or bivariate distributions of X and Y. In the

 final interpretations, bivariate normality will be assumed.

 We maintain our interest in conceptual and computational
 versions of r, but we base our last set of interpretations on

 this common assumption about the population distribution.

 10. CORRELATION ESTIMATED FROM THE

 BALLOON RULE

 This interpretation is due to Chatillon (1984a). He sug-

 gested drawing a "birthday balloon" around the scatterplot

 of a bivariate relationship. The balloon is actually a rough

 ellipse, from which two measures-h and H-are obtained

 (see Fig. 3). h is the vertical diameter of the ellipse at the
 center of the distribution on the X axis; H is the vertical
 range of the ellipse on the Y axis. Chatillon showed that the

 correlation may be roughly computed as

 r= A1 - (h/H)2. (10.1)

 He gave a theoretical justification of the efficacy of this

 rough-and-ready computational procedure, assuming both

 bivariate normality and bivariate uniformity. He also pre-

 sented a number of examples in which the technique works
 quite well. An intriguing suggestion he made is that the

 "balloon rule" can be used to construct approximately a

 bivariate relationship with some specified correlation. One
 draws an ellipse that produces the desired r and then fills

 in the points uniformly throughout the ellipse. Thomas (1984)
 presented a "pocket nomograph," which was a 3" x 5"

 slide that could be used to "sight" a bivariate relationship
 and estimate a correlation based on the balloon rule.

 11. CORRELATION IN RELATION TO THE

 BIVARIATE ELLIPSES OF ISOCONCENTRATION

 Two different authors have suggested interpretations of

 r related to the bivariate ellipses of isoconcentration. Note

 that these ellipses are more formal versions of the "balloon"
 from Section 10 and that they are the geometric structures

 that Galton observed in his empirical data (see Fig. 1).
 Chatillon (1984b) gave a class of bivariate distributions
 (including normal, uniform, and mixtures of uniform) that
 have elliptical isodensity contours. There is one ellipse for

 every positive constant, given the population correlation.
 The balloon that one would draw around a scatterplot would

 approximate one of these ellipses for a large positive con-

 stant. If the variables are standardized, then these ellipses
 are centered on the origin. For p > 0, the major axes fall

 on the positive diagonal; for p < 0, the negative diagonal.
 Marks (1982) showed, through simple calculus, that the

 slope of the tangent line at Zx = 0 is the correlation. Figure

 Zy

 tangent at Zx=O

 major axis length= D

 minor axis length =d

 Figure 3. The Correlation Related to Functions of the Ellipses of
 Isoconcentration.
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 3 shows this tangent line, the slope of which equals r. When

 the correlation is 0, the ellipse is a circle and the tangent

 has slope 0. When the correlation is unity, the ellipse ap-

 proaches a straight line that is the diagonal (with slope 1).

 Note that, since all of the ellipses of isoconcentration are

 parallel, the interpretation is invariant to the choice of the

 ellipse. It is also worth noting that the slope of the tangent

 line at Zx = 0 is the same as the slope of the standardized
 regression line (see Sec. 3).

 Schilling (1984) also used this framework to derive a

 similar relationship. Let the variables be standardized so

 that the ellipses are centered on the origin, as before. If D

 is the length of the major axis of some ellipse of isocon-

 centration and d is the length of the minor axis, then

 r = (D2 - d2)/(D2 + d2). (11.1)

 These axes are also portrayed in Figure 3, and the inter-

 pretation is invariant to choice of ellipse, as before.

 12. CORRELATION AS A FUNCTION OF TEST

 STATISTICS FROM DESIGNED EXPERIMENTS

 The previous interpretations of r were based on quanti-

 tative variables. Our 12th representation of the correlation

 shows its relationship to the test statistic from designed

 experiments, in which one of the variables (the independent
 variable) is a categorical variable. This demonstrates the

 artificiality of the correlational/experimental distinction in

 discussing experimental design. In fact, Fisher (1925) orig-

 inally presented the analysis of variance (ANOVA) in terms

 of the intraclass correlation (see Box 1978).
 Suppose we have a designed experiment with two treat-

 ment conditions. The standard statistical model to test for

 a difference between the conditions is the two-independent-

 sample t test. If X is defined as a dichotomous variable

 indicating group membership (0 if group 1, 1 if group 2),

 then the correlation between X and the dependent variable
 Y is

 r = t 2N + n -2, (12.1)

 where n is the combined total number of observations in

 the two treatment groups. This correlation coefficient may
 be used as a measure of the strength of a treatment effect,
 as opposed to the significance of an effect. The test of
 significance of r in this setting provides the same test as the
 usual t test. Clearly, then, r can serve as a test statistic in

 a designed experiment, as well as provide a measure of
 association in observational settings.

 In ANOVA settings with more groups or multiple factors,

 the extension of this relationship defines the multiple cor-
 relation coefficients associated with main effects and inter-

 actions in more complex experiments. For example, in a
 one-way ANOVA setting with k groups and a total of N

 subjects, the squared-multiple correlation between the de-

 pendent variable and the columns of the design matrix

 is related to the F statistic through the following formula

 (Draper and Smith 1981, p. 93): R2 _ F(k - 1)/[F(k -
 1) + (N -k)].

 13. CORRELATION AS THE RATIO

 OF TWO MEANS

 This is the third interpretation of the correlation involving

 means (see Secs. 4 and 6). It provides an appropriate con-

 clusion to our article, since it was first proposed by Galton.

 Furthermore, Galton's earliest conceptions about and cal-

 culations of the correlation were based on this interpretation.

 An elaboration of this interpretation was presented by

 Nicewander and Price (1982).

 For Galton, it was natural to focus on correlation as a

 ratio of means, because he was interested in questions such

 as, How does the average height of sons of unusually tall

 fathers compare to the average height of their fathers? The

 following development uses population rather than sample
 notation because it is only in the limit (of increasing sample

 size) that the ratio-of-means expression will give values

 identical to Pearson's r.

 Consider a situation similar to one that would have in-

 terested Galton. Let X be a variable denoting mother's IQ,

 and let Y denote the IQ of her oldest child. Further assume

 that the means ,t(X) and ,t(Y) are 0 and that the standard

 deviations cr(X) and cr(Y) are unity. Now select some ar-

 bitrarily large value of X (say Xc), and compute the mean

 IQ of mothers whose IQ is greater than X. Let this mean

 be denoted by ,u(X|X > X,), that is, the average IQ of
 mothers whose IQ is greater than X,. Next, average the IQ
 scores, Y, of the oldest offspring of these exceptional moth-

 ers. Denote this mean by ,A(YIX > X,), that is, the average
 IQ of the oldest offspring of mothers whose IQ's are greater

 than Xc. Then it can be shown that

 A(YIX > Xc) - Ay _ L(YIX > XC) r~~~ ~ = (13.1)
 r (XIX > xc) - ,uLx /.L(XIX > Xc) ,1.1,

 The proof of (13.1) requires an assumption of bivariate

 normality of standardized X and Y. The proof is straight-

 forward and entails only the fact that, for Zx and zy, r is
 the slope of the regression line as well as the ratio of these

 two conditional means.

 Our example is specific, but the interpretation applies to
 any setting in which explicit selection occurs on one vari-

 able, which implicitly selects on a second variable. Brogden

 (1946) used the ratio-of-means interpretation to show that

 when a psychological test is used for personnel selection,
 the correlation between the test score and the criterion mea-

 sure gives the proportionate degree to which the test is a

 "perfect" selection device. Other uses of this interpretation

 are certainly possible.

 CONCLUSION

 Certainly there are other ways to interpret the correlation
 coefficient. A wealth of additional fascinating and useful
 portrayals is available when a more statistical and less al-
 gebraic approach is taken to the correlation problem. We

 in no sense presume to have summarized all of the useful

 or interesting approaches, even within the fairly tight frame-

 work that we have defined. Nevertheless, these 13 ap-

 proaches illustrate the diversity of interpretations available

 for teachers and researchers who use correlation.
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 Galton's original work on the correlation was motivated
 by a very specific biometric problem. It is remarkable that
 such a focused effort would lead to the development of what
 is perhaps the most broadly applied index in all of statistics.
 The range of interpretations for the correlation coefficient
 demonstrates the growth of this remarkable index over the

 past century. On the other hand, Galton and Pearson's index
 is surprisingly unchanged from the one originally proposed.

 [Received June 1987. Revised August 1987.]
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 Election Recounting

 BERNARD HARRIS*

 1. INTRODUCTION

 The purpose of this article is to provide a simple model

 for the calculation of the probability of success in reversing

 the result of a closely contested election by recounting of

 ballots. Technological changes render the model described

 here less relevant to actual political elections than has been

 the case. The consequences of these technological changes

 and their effect on modeling election recounting are de-

 scribed in Section 5. There I mention some other election

 recounting problems, which are also not covered by the

 simple model employed here. Nevertheless, the election

 described actually occurred, and I discussed the chance of

 reversing the outcome with the losing candidate.

 In the anecdotal material that follows, the names of the

 actual participants are suppressed. Also, I have delayed

 writing this material for many years with the belief that the

 passage of time would make the facts concerning this elec-
 tion indistinguishable from many other elections with com-

 parable outcomes.

 2. THE ELECTION

 About 500,000 votes were cast in the disputed election.
 Candidate A lost by a plurality of about 1,500 votes. That

 is, Candidate B received 50.15% of the votes cast. In view

 of the closeness of the outcome, Candidate A felt that a

 recount would be desirable and that there was an excellent

 chance that the outcome would be reversed. His campaign

 advisor, who was also the treasurer of the election campaign,

 said, "There are 2,000 election districts. We can win with
 a recount if we change just one vote in each district." State
 law required the candidate requesting a recount to guarantee

 *Bernard Harris is Professor, Department of Statistics, University of

 Wisconsin, Madison, Wisconsin 53706. He thanks the referees for their

 careful perusal of this article and for their constructive comments.

 66 The American Statistician, February 1988, Vol. 42, No. 1  ?) 1988 American Statistical Association

This content downloaded from 
�������������169.226.92.8 on Sun, 04 Apr 2021 15:47:17 UTC�������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8

	Issue Table of Contents
	American Statistician, Vol. 42, No. 1, Feb., 1988
	Front Matter
	Strategic Planning for the American Statistical Association, 1984-1987 [pp.1-9]
	Statistical Policy for State and Local Governments [pp.10-16]
	[Statistical Policy for State and Local Governments]: Comment [pp.16-18]
	[Statistical Policy for State and Local Governments]: Comment [pp.18-20]
	[Statistical Policy for State and Local Governments]: Comment [pp.21-22]
	The Use of Box-Cox Transformations in the Development of Multivariate Tolerance Regions with Applications to Clinical Chemistry [pp.23-30]
	Some Statistical Analysis Issues at the World Fertility Survey [pp.31-36]
	Assessment of 2 × 2 Associations: Generalization of Signal-Detection Methodology [pp.37-49]
	Nonoptimally Weighted Least Squares [pp.50-53]
	Teacher's Corner
	The Digidot Plot [p.54]
	Statistical Effects of Class Size and Teaching Ability in Determining Teacher Ratings [pp.55-59]
	Thirteen Ways to Look at the Correlation Coefficient [pp.59-66]
	Election Recounting [pp.66-68]
	Integral Identities for Random Variables [pp.68-72]
	Information and the Likelihood Function in Exponential Families [pp.73-75]
	A Bayesian Analysis Suitable for Classroom Presentation [pp.75-77]
	A Note on the Hyperbolic-Secant Distribution [pp.77-79]
	Maximum Z Scores and Outliers [pp.79-80]
	Computer Programs to Demonstrate Some Hypothesis-Testing Issues [pp.80-81]

	Statistical Computing
	Statistical Computing Software Reviews
	untitled [pp.82-84]

	New Developments in Statistical Computing
	ALLOC.P: A Multivariate Allocation Program [p.85]
	Recent Developments for the TSP Program [pp.85-86]
	Bootstrap Applications for the Behavioral Sciences [p.86]

	Letters to the Editor [pp.87-91]
	Back Matter



